Abstract:
A rendering apparatus includes: a radiant-energy calculating device for determining a spectral radiance for each infinitesimal area of an object by using a spectral radiance of a light source irradiating the object, a spectral reflectance in the infinitesimal area of the object, and a spectral reflectance factor in a wide area of the object; a color-specification-value calculating device for calculating color specification values of a colorimetric system on the basis of the spectral radiance obtained for each infinitesimal area; a transforming device for transforming the color specification values into image data for displaying an image of the object; and a display device for displaying the image of the object on the basis of the image data.
Abstract:
The invention can be used to determine the color to be given to a dental prosthesis, for example, on the basis of color measurements performed on adjacent teeth in the mouth of the patient. An optical fiber instrument picks up light reflected from a tooth and transmits it to the inlet of a spectrocolorimeter which associated with a microprocessor in order to determine the diffuse spectral reflectance of the tooth and to calculate the tristimulus values of its apparent color under various different types of illumination. The invention is particularly suitable for determining the color of dental prostheses.
Abstract:
Apparatus for measuring and controlling the color of a moving web in which a circular variable bandpass filter having a passband varying substantially continuously with angular displacement through the optical spectrum is interposed in the optical path between the web and a detector and is rotated to produce a detector output which periodically scans the optical spectrum. In one disclosed embodiment, the detector outputs at the various wavelengths are weighted to produce X, Y and Z tristimulus values while, in another disclosed embodiment, dye flows are so controlled as to minimize the total square error between the measured reflectance spectrum and the desired reflectance spectrum.
Abstract:
Disclosed are a colorimeter and a reflectivity measuring method based on a multichannel spectrum. The colorimeter includes a main unit and a calibration box, wherein the main unit includes an integrating sphere, a light source and a main sensor, a detection hole is formed in one side of a top of the integrating sphere, a light-through hole is formed in a side of the integrating sphere, and a measuring port is formed in a bottom of the integrating sphere, the light source is arranged outside the light-through hole, and the main sensor is arranged outside the detection hole; the calibration box includes a housing and a white board arranged at a top of the housing, the white board is correspondingly matched with the measuring port, and the calibration box is connected with the main unit; the sensor is a multichannel spectral sensor.
Abstract:
A color measuring system includes a receiving section configured to receive designation of a color group including a plurality of colors, a determining section configured to determine whether a color measured by the color measuring section and a comparison target color in the color group coincide, and a control section configured to, when it is determined that the measured color and the comparison target color coincide, automatically advance a color measuring process to a color measuring process for performing the color measurement for a next color in the color group.
Abstract:
A custom-tint paint production system that includes a color sensing device such as a low-resolution spectrophotometer to measure color of a preexisting surface color, a color data translation engine to convert the measured values to spectral curve values, and a tint formulation engine to determine a custom tint formulation based upon the spectral curve values, which is usable by a tinter to tint a base coating composition by adding one or more colorants in amounts based on color measurements from the color sensing device.
Abstract:
The invention relates to a system and a method for ascertaining a color recipe which produces a color product with a specified hue after an application onto a specified substrate using a specified application method. The method has the steps of: a) providing a database with a plurality of data sets, b) specifying a target application method, a target substrate, and a desired target hue by means of a user, c) searching the database using a computer program, and d) when at least one suitable database has been found in step c), displaying the information stored in the at least one data set, said information relating to the color recipe, wherein at least one of the data sets also comprises information on at least one reference hue, a reference application method, and a reference substrate. The reference hue is produced when the color recipe to which information contained in the data set relates is applied onto the reference substrate using the reference application method, and the reference application method differs from the application method to which the information contained in the data set relates and/or the reference substrate differs from the substrate to which information contained in the data set relates.
Abstract:
Systems, apparatuses, and methods for performing color channel correlation detection are disclosed. A compression engine performs a color channel transform on an original set of pixel data to generate a channel transformed set of pixel data. An analysis unit determines whether to compress the channel transformed set of pixel data or the original set of pixel data based on performing a comparison of the two sets of pixel data. In one scenario, the channel transformed set of pixel data is generated by calculating the difference between a first pixel component and a second pixel component for each pixel of the set of pixel data. The difference is then compared to the original first pixel component for each pixel. If the difference is less than or equal to the original for a threshold number of pixels, then the analysis unit decides to apply the color channel transform prior to compression.
Abstract:
A color measurement apparatus includes at least one illuminator, an imager, and circuitry. The circuitry is configured to normalize each pixel included in an imaging region of one of the spectral reflectance images of the measurement target irradiated with light at a specific illumination angle of the plurality of illumination angles, with one of the spectral reflectance images of the reference object irradiated with light at the specific illumination angle, for each of the plurality of illumination angles so as to generate normalized spectral reflectance images of the measurement target. The circuitry further calculates a numerical value of at least one color for each pixel of the normalized spectral reflectance images of the measurement target, for respective ones of the plurality of illumination angles, to measure color of the surface of the measurement target.
Abstract:
A method that includes obtaining, using a processor, reflectance data from a target coating and calculating, using the processor, virtual color response data using one of at least one Kepler's laws of planetary motion equation and at least one derivation of at least one Kepler's laws of planetary motion equation. The method also includes generating, using the processor, a coating formulation that is the same or substantially similar in appearance to the target coating.