Abstract:
A composition and an article comprising or produced from the composition are disclosed. The composition comprises an ionomer and a reducing static charge-buildup amount of potassium ion wherein the ionomer is neutralized with sodium, zinc, or magnesium ions. The article can be a film including a multilayer film.
Abstract:
This invention provides a water-based primer composition comprising (A) an aqueous dispersion of modified polyolefin, which is prepared by dispersing a modified polyolefin (a) in an aqueous medium, the polyolefin (a) being produced by modifying an unsaturated carboxylic acid- or acid anhydride-modified polyolefin (i) having a melting point not higher than 120° C. and an weight-average molecular weight within a range of 30,000-200,000, further with a compound having polyoxyalkylene chain; (B) at least one kind of aqueous resin selected from aqueous urethane resin, aqueous acrylic resin and aqueous polyester resin; and (C) pigment; the solid weight ratio of the component (A)/component (B) being within a range of 20/80-85/15, and containing the component (C) in an amount within a range of 0.5-200 parts by weight per 100 parts by weight of the total solid resin content of the composition. Use of the water-based primer composition enables to form coating film excelling in water resistance, humidity resistance, gasohol resistance and the like.
Abstract:
The invention relates to the preparation of an antistatic composition comprising adding a liquid or a dissolved ionic substance to a porous polymer and processing the porous polymer together with further additives and further thermoplastic polymers in the melt. The invention relates also to the antistatic composition itself and to its use for rendering polymers antistatic.
Abstract:
Antistatic agents for synthetic polymer materials have phosphonium sulfonate made from organic sulfonate anion and organic phosphonium cation of specified kinds as significant component and also contain alkali metal ions and/or alkali earth metal ions at total concentration of 0.1-300 ppm.
Abstract:
A composition of polyolefin, ester additive, and hyperbranched polymer with improved tensile energy-to-break value compared to polyolefins wihtout the hyperbranched polymer. The concentration of the hyperbranched polymers can be between about 0.1% and about 10% by weight of the polyolefins. The polyolefins have a melt flow index of about 14 g/10 min or greater.