Abstract:
In general, techniques are described for forming a collaborative sound system. A headend device comprising one or more processors may perform the techniques. The processors may be configured to identify mobile devices that each includes a speaker and that are available to participate in a collaborative surround sound system. The processors may configure the collaborative surround sound system to utilize the speaker of each of the mobile devices as one or more virtual speakers of this system and then render audio signals from an audio source such that when the audio signals are played by the speakers of the mobile devices the audio playback of the audio signals appears to originate from the one or more virtual speakers of the collaborative surround sound system. The processors may then transmit the processed audio signals rendered to the mobile device participating in the collaborative surround sound system.
Abstract:
A method for encoding three dimensional audio by a wireless communication device is disclosed. The wireless communication device detects an indication of a plurality of localizable audio sources. The wireless communication device also records a plurality of audio signals associated with the plurality of localizable audio sources. The wireless communication device also encodes the plurality of audio signals.
Abstract:
A method for mapping a source location by an electronic device is described. The method includes obtaining sensor data. The method also includes mapping a source location to electronic device coordinates based on the sensor data. The method further includes mapping the source location from electronic device coordinates to physical coordinates. The method additionally includes performing an operation based on a mapping.
Abstract:
Systems, methods, and apparatus for projecting an estimated direction of arrival of sound onto a plane that does not include the estimated direction are described.
Abstract:
Systems, methods, and apparatus for matching pair-wise differences (e.g., phase delay measurements) to an inventory of source direction candidates, and application of pair-wise source direction estimates, are described.
Abstract:
In general, techniques are described that enable voice activation for computing devices. A computing device configured to support an audible interface that comprises a memory and one or more processors may be configured to perform the techniques. The memory may store a first audio signal representative of an environment external to a user associated with the computing device and a second audio signal sensed by a microphone coupled to a housing of the computing device. The one or more processors may verify, based on the first audio signal and the second audio signal, that the user activated the audible interface of the computing device, and obtain, based on the verification, additional audio signals representative of one or more audible commands.
Abstract:
A device includes one or more processors configured to obtain audio signals representing sound captured by at least three microphones and determine spatial audio data based on the audio signals. The one or more processors are further configured to determine a metric indicative of wind noise in the audio signals. The metric is based on a comparison of a first value and a second value. The first value corresponds to an aggregate signal based on the spatial audio data, and the second value corresponds to a differential signal based on the spatial audio data.
Abstract:
Systems, methods and computer-readable media are provided for speech enhancement using a hybrid neural network. An example process can include receiving, by a first neural network portion of the hybrid neural network, audio data and reference data, the audio data including speech data, noise data, and echo data; filtering, by the first neural network portion, a portion of the audio data based on adapted coefficients of the first neural network portion, the portion of the audio data including the noise data and/or echo data; based on the filtering, generating, by the first neural network portion, filtered audio data including the speech data and an unfiltered portion of the noise data and/or echo data; and based on the filtered audio data and the reference data, extracting, by a second neural network portion of the hybrid neural network, the speech data from the filtered audio data.
Abstract:
A device includes processors configured to determine, in a first power mode, whether an audio stream corresponds to speech of at least two talkers. The processors are configured to, based on determining that the audio stream corresponds to speech of at least two talkers, analyze, in a second power mode, audio feature data of the audio stream to generate a segmentation result. The processors are configured to perform a comparison of a plurality of user speech profiles to an audio feature data set of a plurality of audio feature data sets of a talker-homogenous audio segment to determine whether the audio feature data set matches any of the user speech profiles. The processors are configured to, based on determining that the audio feature data set does not match any of the plurality of user speech profiles, generate a user speech profile based on the plurality of audio feature data sets.
Abstract:
Methods, systems, and devices for signal processing are described. Generally, as provided for by the described techniques, a wearable device may receive an input audio signal (e.g., including both an external signal and a self-voice signal). The wearable device may detect the self-voice signal in the input audio signal based on a self-voice activity detection (SVAD) procedure, and may implement the described techniques based thereon. The wearable device may perform beamforming operations or other separation procedures to isolate the external signal and the self-voice signal from the input audio signal. The wearable device may apply a first filter to the external signal, and a second filter to the self-voice signal. The wearable device may then mix the filtered signals, and generate an output signal that sounds natural to the user.