Abstract:
Systems and methods for interference mitigation in unlicensed spectrum are disclosed. In an aspect, the methods and apparatus may include requesting, by a first network entity, one or more user equipments (UEs) to perform a plurality of frequency measurements, wherein the plurality of frequency measurements comprises measurements in a licensed spectrum and measurements in an unlicensed spectrum. Further, the methods and apparatus may include calculating a power back-off value based on the plurality of frequency measurements. Moreover, the methods and apparatus may include adjusting a cell coverage based on the power back-off value such that the one or more UEs are outside the cell coverage.
Abstract:
Fractional frequency reuse (FFR) is defined based on a mobility condition of an access terminal. For example, upon determining that an access terminal is moving (or at a cell edge, or experiencing poor link conditions, etc., due to mobility), FFR may be defined for the serving access point of the access terminal and/or for neighbor access points to maintain acceptable link quality for the access terminal. In particular, FFR may be defined in a manner that frees-up or otherwise reserves resources for the access terminal. For example, the serving access point may allocate additional sub-bands for the access terminal and/or increase the power levels used on the sub-bands allocated for the access terminal. In addition, neighbor access points may back-off these sub-bands.
Abstract:
Systems and methods for managing communication in an unlicensed band of frequencies to supplement communication in a licensed band of frequencies in unlicensed spectrum are disclosed. The management may comprise, for example, monitoring utilization of resources currently available to a first Radio Access Technology (RAT) via at least one of a Primary Cell (PCell) operating in the licensed band, a set of one or more Secondary Cells (SCells) operating in the unlicensed band, or a combination thereof. Based on the utilization, a first SCell among the set of SCells may be configured or de-configured with respect to operation in the unlicensed band.
Abstract:
Techniques are provided for utilizing selected inter-frame spacing, such as reduced inter-frame spacing (RIFS) or short inter-frame spacing (SIFS) to avoid failed data transmissions in a Wi-Fi network or the like. For example, there is provided a method, operable by a transmitter node or entity, such as, for example, an access point (AP), that may involve sending a data transmission in a data aggregation mode, the data transmission comprising aggregated MAC protocol data units (A-MPDUs). The method may involve monitoring for and detecting potential short interference bursts in the network. The method may involve re-sending the data transmission in a data bursting mode, the data transmission comprising back-to-back data packet bursts separated by a selected inter-frame spacing.
Abstract:
A method, for determining a dynamic occupancy grid, includes: obtaining radar measurement data from at least one radar sensor of an apparatus; obtaining camera-derived data based on at least one image obtained by at least one camera of the apparatus; and determining the dynamic occupancy grid based on the radar measurement data and the camera-derived data.
Abstract:
Disclosed are systems, apparatuses, processes, and computer-readable media for processing image data. For example, an apparatus can compute initial embeddings from a plurality of images. The apparatus can construct a graph comprising nodes representing the initial embeddings. The apparatus can further perform, based on the graph, a plurality of message passing steps successively to generate final embeddings. The apparatus can classify, using a classification engine, one or more objects in each of the plurality of images based on the final embeddings. The apparatus can further compute a classification loss based on the classifying of the one or more objects.
Abstract:
The present disclosure generally relates to an object detection system. For example, aspects of the present disclosure relate to systems and techniques for performing object detection using sensor information, such as elevation and/or velocity information from one or more light-based sensors. One example apparatus generally includes one or more processors operably configured to: obtain sensor information indicating at least two objects in an environment; determine at least one of a velocity or an elevation associated with each object of the at least two objects; consolidate the at least two objects into a common object based on the at least one of the velocity or the elevation; and output an indication of the common object.
Abstract:
The present methods and apparatus relate to managing interference associated with a configuration of a self-organizing network (SON) during wireless communication, comprising receiving, at a first radio access technology (RAT) entity, measurement information from a user equipment (UE) for assisting with interference management at a second RAT entity, wherein the first RAT entity is collocated with the second RAT entity; and configuring the second RAT entity based at least in part on the measurement information received by the first RAT entity. In a further aspect, the present methods and apparatus comprise embedding, by a first RAT entity, RAT entity-specific information of a second RAT entity in a management indication, wherein the first RAT entity and the second RAT entity are collocated; and transmitting the management indication to one or both of a UE and another first RAT entity.
Abstract:
Certain aspects of the present disclosure provide techniques for multi-stage channel reservation signals for direction transmission and reception. According to certain aspects, a method of wireless communication by a cell is provided. The method generally includes determining a portion of a shared spectrum for at least one of sending or receiving a transmission and transmitting a plurality of channel reservation signals associated with a plurality of beams to reserve the portion of the shared spectrum.
Abstract:
Techniques for intra- and inter-operator coordination on a shared communication medium are disclosed. A central coordination server may send an operating mode information message to coordinate operation of different points on the communication medium. An access point may receive such an operating mode information message and adjust one or more communication parameters. An access point may determine a level of timing synchronization with neighboring access points and send a synchronization advertisement message to an access terminal. An access terminal may receive a synchronization advertisement message and perform one or more measurements of the neighboring access points.