Abstract:
A device may receive a signal strength indicator associated with a connection between a mobile device and a first base station. The signal strength indicator may indicate a strength of a radio signal received by the mobile device from the first base station. The device may transmit the signal strength indicator to a network device, and may receive, from the network device, a first notification to activate a second base station based on the signal strength indicator. The device may activate the second base station based on the first notification. The second base station may provide temporary wireless connectivity for the mobile device.
Abstract:
A femto cell at a customer premises, such as an IP-based femto Base Transceiver System (IP-BTS), can be configured as a “private access” node intended to service a limited set of mobile stations. However, mobile stations not associated with the private femto cell may acquire and lock onto the femto BTS. To avoid service blockages in such cases, the private femto BTS will allow call access attempts by, and call deliveries to, a non-associated mobile station, despite the “private access” configuration. However, upon completion of call set-up, the non-associated mobile station is directed to initiate handoff, from the private femto cell coverage provided by the femto BTS into a cell coverage of a base station of the macro network, to conserve femto cell resources for use in servicing calls of the associated mobile station(s).
Abstract:
A method may include monitoring available radio access networks for information on one or more of types of radio access technologies, measurements of signal quality, measurements of signal strengths, or carrier identifiers of the available radio access networks; calculating network priorities for the available radio access networks based on the monitored information; detecting a border condition, the border condition based on a decrease in the measurements of signal quality or the measurements of signal strength; selecting, when a border condition is detected, a new radio access network from the available radio access networks based on the calculated network priorities of the available radio access networks; and connecting to a communication channel using the selected available radio access network.
Abstract:
A method, performed by a server device, may include receiving a request to activate an application session, the request being received from a user equipment on behalf of a particular application installed on the user equipment. The method may further include determining one or more application requirements associated with the particular application; determining conditions associated with one or more application servers; selecting a particular one of the one or more application servers based on the determined one or more application requirements and based on the determined conditions; and setting up the application session between the user equipment and between the selected particular one of the one or more application servers.
Abstract:
A light apparatus includes s light arrangement and a highlighting element. The light arrangement includes a light housing, at least a connector coupling with the light housing for electrically connecting to a power supply source, and at least a light source received in the light housing for generating a non-neon light to penetrate through the light housing. The highlighting element is provided at the light housing and arranged in such a manner that when the light passes through the light housing, the highlighting element creates a neon light emitting effect at the light arrangement.
Abstract:
An illuminating sign includes a base panel; an illuminating unit, and a front casing. The front casing includes a metallic light blocking frame attached on the base panel for enhancing a strength of the front casing, wherein the light blocking frame has a plurality of through slots spacedly formed thereon, a plurality of illuminating members securely supported in front of the base panel, and a highlighting element provided at the illuminating members, wherein when the illumination unit is operated for generating the light towards the front casing, the metallic light blocking frame not only blocks the light passing therethrough but also facilitates efficient and effective heat transfer from the illuminating unit to an exterior of the front casing for preventing the illuminating unit from being overheat within the front casing.
Abstract:
Femto cells that extend mobile network coverage into customer premises operate in a frequency band typically assigned to a macro network. As disclosed, to facilitate system discovery and registrations of mobile stations with femto cells, a carrier designates one the channels within the band as a primary channel for its femto cells. For example, neighbor list messages transmitted by macro network base stations can provide frequency and PN code information directing mobile stations to search the primary channel for a PN code of the femto cells. Also, a mobile station PRL may identify femto cells by SID/NID. The SID is that of the carrier's macro network, whereas the NID may be a NID of the macro network or one specifically assigned to femto cell operations. The PRL uses frequency acquisition information for the femto cells that is the same as or similar to that for one of the macro networks.
Abstract:
An improved arithmetic logic unit (ALU) of an erasable-programmable logic device (EPLD) with a flexible, programmable carry function allows a broad range of functions to be implemented. The inventive circuit utilizes a separately configurable carry chain with multiple logic and arithmetic function capabilities.
Abstract:
In a programmable logic device having a plurality of external pins each of which may be driven by an output drive structure controlled by a programmable logic block, a logic device such as an OR gate or a programmable pull-up or pull-down switch is inserted between the input terminal of the output drive structure and the programmable logic block or other internal logic block which controls the output driver. This inserted structure allows the macrocell to be used for internal logic while the output drive structure is used to stabilize power or ground voltage.
Abstract:
A carry-lookahead structure for programmable architectures includes a number of M-bit carry lookahead units, each M-bit unit having two parallel programmable carry paths having AND gates controlled by configuration bits to program the beginning and end of an operating carry chain within the M-bit units, as well as the beginning locations in each unit, one path generating a first set of carry bits for the case of the carry-in equal to 0, and the other generating a second set of carry bits for the case of the carry-in equal to 1, and at least one multiplexer controlled by the carry-in for selecting one of the two carries at the most significant bit of the first and second sets of carry bits as carry-out of the unit. Each M-bit unit may further include multiplexers controlled by the carry-in for selecting which of the first and second sets of carry bits are the correct carry bits for addition and M sum logic elements for generating the outputs of sum bits. An alternative is an adder in which the precomputation of the sums is performed for the two possible values of carry-in in each M-bit unit, providing two sets of sum bits, and where multiplexers select which of the two sets of the sum bits is the correct sum and which of the two carry bits produced in the most significant bit of the unit is used as the carry-out of the unit in response to the actual carry-in value of the unit.