Abstract:
The present disclosure provides a display array substrate, a compensation method, a display panel and a display device. The display array substrate includes at least one power line and a voltage application unit. The at least one power line is connected to pixels in at least one column within an effective display region on the display array substrate. The power application unit is arranged outside the effective display region and configured to apply power supply voltages to at least two power supply voltage input points on the at least one power line. An absolute value of a voltage difference between the at least two power supply voltage input points is less than a predetermined voltage threshold.
Abstract:
The present disclosure provides a pixel circuit, a display panel and a driving method thereof. The pixel circuit comprises a charging module, a light-emitting device and a capacitor. The present disclosure achieves a pulse width modulation driving with a pixel data refreshing frequency that is equal to a frame frequency, and addresses the problem of a large operation current and a low service life with the light-emitting device in the pixel. Furthermore, it features in low power consumption, a simple structure and being easy to implement.
Abstract:
A pixel driving circuit and a driving method thereof, and an array substrate are provided. The pixel driving circuit includes a data line (Data), a gate line (Gate), a first power supply line (ELVDD), a second power supply line (ELVSS), a reference signal line (ref), a light emitting device (D), a driving transistor (T7), a storage capacitor (C1), a reset unit, a data writing unit, a compensating unit and a light emitting control unit. The pixel driving circuit can compensate and remove non-uniformity in displaying caused by variances in threshold voltage among driving transistors.
Abstract:
The present disclosure relates to a testing method of a 3D display cross interference and the testing device thereof. The method according to the present disclosure comprises: acquiring a brightness of at least one first test image in a region where a left eye image is displayed in a display device and a brightness of at least one second test image in a region where a right eye image is displayed in the display device through a left eye lens or a right eye lens of stereo glasses; comparing the brightness of the acquired first test image and the brightness of the acquired second test image, and determining a cross interference value or a cross interference value range between the left eye image and the right eye image according to the comparison result, a grey scale value of the first test image and a grey scale value of the second test image. By using the method according to the embodiment of the present disclosure, the cross interference value or the cross interference value range between the left eye image and the right eye image of the stereo display system is able to be tested quickly so that the processing speed and efficiency of the cross interference test are enhanced.
Abstract:
A pixel driving circuit, driving method thereof, an array substrate and display apparatus, the pixel driving circuit comprises: a data line for providing a data voltage; a gate line for providing a scanning voltage; a first power supply line for providing a first power supply voltage; a second power supply line for providing a second power supply voltage; a light emitting device connected to the second power supply line; a driving transistor connected to the first power supply line; a storage capacitor having a first terminal connected to a gate of the driving transistor and configured to transfer information including the data voltage to the gate of the driving transistor; a resetting unit configured to reset a voltage across the storage capacitor as a predetermined signal voltage; a data writing unit configured to write information including the data voltage into the second terminal of the storage capacitor; a compensating unit configured to write information including a threshold voltage of the driving transistor and information of the first power supply voltage into the first terminal of the storage capacitor; and a light emitting control unit configured to write the first power supply voltage into the second terminal of the storage capacitor and control the driving transistor to drive the light emitting device to emit light.
Abstract:
A shift register unit and a driving method thereof, a gate drive circuit, and a display device are disclosed. The shift register unit includes: an input circuit, a first control circuit, an output circuit, an output noise reduction circuit, and a reset circuit; wherein the input circuit is connected to an input terminal; the first control circuit is connected to the first node, a second node, and a first clock signal terminal; the output circuit is connected to an output terminal; the output noise reduction circuit is connected to the output terminal; and the reset circuit is connected to a total reset terminal and a first voltage terminal, wherein the total reset signal is an invalid level in a first operation stage, and the total reset signal includes at least one period of valid level in a second operation stage.
Abstract:
A photocurrent amplification circuit, an amplification control method, an optical detection module and a display apparatus are provided, where the photocurrent amplification circuit includes a photoelectric sensor, a compensation circuit, a reset circuit, an energy storage circuit and a drive circuit, and the photoelectric sensor is configured to sense the optical signal and convert the optical signal into the photocurrent signal; the compensation circuit controls the communication between the control terminal of the drive circuit and the first terminal of the drive circuit under the control of the compensation control signal; the reset circuit controls the communication between the first voltage terminal and the control terminal of the drive circuit under the control of the reset control signal.
Abstract:
A pixel circuit includes: a driving sub-circuit including a first end connected to a first power line, a control end connected to a first node, and a second end connected to a second node; and a compensation sub-circuit connected to the first node, the second node, a light emission control signal line to receive one of a first voltage and a reference voltage, a scanning signal line to receive one of the first control voltage and a second control voltage, and a data signal line to receive one of a data voltage and the reference voltage. Under control of the reference voltage received from the light emission control signal line, a first control voltage received from the scanning signal line, and the reference voltage received from the data signal line, when the first power line receives the first power voltage, a threshold voltage of the driving sub-circuit is compensated.
Abstract:
The present disclosure provides a pixel circuit, a display panel and a display apparatus. A gate of a data writing transistor is electrically connected with a first scan line, a first electrode of the data writing transistor is electrically connected with a data line, and a second electrode of the data writing transistor is electrically connected with a first electrode of a drive transistor; a compensation circuit is electrically connected with the gate of the drive transistor; and a light emitting control circuit is electrically connected with a first power signal line, the first electrode and the second electrode of the drive transistor, and a first electrode of a light emitting device, respectively; an orthographic projection of the compensation circuit on a base substrate partial overlaps with an orthographic projection of the first power signal line on the base substrate.
Abstract:
The present disclosure provides a pixel circuit, a display panel and a display apparatus. A gate of a data writing transistor is electrically connected with a first scan line, a first electrode of the data writing transistor is electrically connected with a data line, and a second electrode of the data writing transistor is electrically connected with a first electrode of a drive transistor; a gate of a threshold compensation transistor is electrically connected with a second scan line, a first electrode of the threshold compensation transistor is electrically connected with a gate of the drive transistor, and a second electrode of the threshold compensation transistor is electrically connected with a second electrode of the drive transistor; and a compensation circuit is electrically connected with the gate of the drive transistor.