Abstract:
A touch display panel and a method for controlling the same and a touch display device are provided. The touch display panel includes at least one first electrode arranged in a same layer with the touch sensing electrode and insulated from the touch sensing electrode. The first electrode is electrically connected to a first signal input terminal in a display phase to discharge electrostatic charges in the first electrode, and is electrically connected to a second signal input terminal in a touch display phase to keep the first electrode in a high impedance state in the touch phase.
Abstract:
An in-cell touch screen, a touch detection method thereof and a display device are disclosed, the in-cell touch screen comprising: an array substrate and an opposed substrate arranged opposite to each other; a self-capacitance electrode pattern (100, 200), disposed on a side of the array substrate facing the opposed substrate and/or a side of the opposed substrate facing the array substrate, including: a plurality of first self-capacitance electrodes (100), each of the first self-capacitance electrodes (100) being a strip electrode, a plurality of second self-capacitance electrodes (200), each of the second self-capacitance electrodes including a plurality of block electrodes (210) electrically connected with each other; and a touch detecting chip, configured to judge a touch position according to signal variation of the self-capacitance electrode pattern, wherein orthogonal projections of each of the first self-capacitance electrodes (100) and each of the second self-capacitance electrodes (200) on the array substrate cross to each other, and each of the first self-capacitance electrodes (100) and each of the second self-capacitance electrodes (200) are connected with the touch detecting chip through periphery wirings (300), respectively. The in-cell touch screen according to an embodiment of the present disclosure varies the self-capacitance electrode pattern, which can significantly reduce the number of the periphery wirings, and is conducive to narrow frame design; moreover, time required for touch detection can be greatly reduced in a mode of switching self capacitance and mutual capacitance.
Abstract:
In the pixel circuit, at a charging stage, a charging unit controls a first end of a storage capacitor to be at a potential of an input signal from a second level signal input end, controls a second end of the storage capacitor to be at a potential equal to a difference between a potential of an input signal from the first level signal input end and a threshold voltage of a driving TFT; at a compensation jumping stage, a compensation jumping unit controls the first end to be at a data voltage, and enable a voltage at the second end to jump to a sum of the data voltage and a difference between the potential of the input signal from the first level signal input end and the threshold voltage of the driving TFT, to enable a light-emitting unit to emit light using the data voltage.
Abstract:
An array substrate, a method for fabricating the same and a display device are disclosed. The substrate comprises: a gate electrode (11) and a gate line (12) disposed on a base substrate (00), an active layer (20) disposed on the film layer comprising the gate electrode (11) and the gate line (12). The substrate further comprises: a pixel electrode (40) disposed on the same layer as and electrically insulated from the active layer (20); a drain electrode (31), a source electrode (32) and a date line (33) disposed on the film layer comprising the active layer (20) and the pixel electrode (40), wherein the drain electrode (31) is electrically connected to the pixel electrode (40) directly; a common electrode layer (50) and a plurality of wires (60) disposed on the film layer having the drain electrode (31), the source electrode (32) and the date line (33) and electrically insulated from each of the drain electrode (31), the source electrode (32), the date line (33) and the pixel electrode (40); wherein the plurality of wires (60) is disposed on a different layer from the common electrode layer (50), the common electrode layer (50) comprises a plurality of self-capacitive electrodes (51) disposed in a same layer and insulated from each other, and each of the wires (60) is electrically connected to a corresponding self-capacitive electrode (51) through a via hole (100). The array substrate solves the problem of having a relatively large touch blind area in self-capacitive touch control structures.
Abstract:
Disclosed are a capacitive touch structure, an in-cell touch panel, a display device and a scanning method thereof. The capacitive touch structure includes: a plurality of self-capacitance electrodes (10) disposed in a same layer and located in at least two regions contained in the layer surface where self-capacitance electrodes (10) are located; region electrodes (20) located in each of the regions and disposed in the same layer with the self-capacitance electrodes (10); first wires connected with the self-capacitance electrodes (10), wherein there is at least a plurality of first wires (41) that satisfy the following conditions: one of the first wire (41) is connected with at least two of the self-capacitance electrodes (10) located in different regions respectively; second wires connected with the region electrodes (20), wherein the region electrodes in respective regions are electrically connected with different second wires; and a touch sensing chip connected with the first wires (41) and the second wires.
Abstract:
Disclosed is a touch display panel, a touch display device and a touch detection method. The touch display panel includes receiving electrodes and transmitting electrodes, and further includes a plurality of transparent electrodes and a touch detecting circuit. The transparent electrodes are disposed on a substrate at a touching side of the display panel and one-to-one connected and correspond to the transmitting electrodes. The touch detecting circuit is connected to individual transparent electrodes, and includes a voltage switch unit, a storage unit and a processing unit. The processing unit is configured for measuring actual display data and actual touch data of each touch node, finding corresponding initial touch data, and removing influence caused by the corresponding initial touch data from the actual touch data to obtain an actual output.
Abstract:
The present disclosure discloses a touch display device and its manufacturing method. The touch display device includes a first substrate and a second substrate arranged opposite to each other, a liquid crystal layer arranged between the first substrate and the second substrate, and receiver electrodes arranged on the first substrate and spaced apart from each other. First transparent electrodes spaced apart from each other are arranged on the first substrate and below the receiver electrodes in a direction where a display electrode on the second substrate is projected onto the first substrate. The first transparent electrode is spaced apart from the receiver electrode through an insulating layer, and connected to a constant potential.
Abstract:
The embodiment of the present disclosure discloses a touch display device and a driving method thereof, relates to the display technical field, and can extend the time for the touch display device to perform touch control. The touch display device includes n rows of pixels and divides the n rows of pixels into several display regions, wherein n is a natural number greater than 1, the driving method of the touch display device comprising: after the touch display device sends a display signal to the ith row of pixels, and before the touch display device sends a display signal to the (i+1)th row of pixels, sending a touch control signal, by the touch display device, to perform touch control on one display region thereamong, wherein 1≦i
Abstract:
The present invention provides a touch display panel comprising a touch driving electrode and a touch sensing electrode, wherein the touch display panel further comprises a signal enhancement layer which is capable of generating electric field lines by coupling with the touch driving electrode and/or the touch sensing electrode. The present invention also provides a display device including the above touch display panel. When the operator's finger touches the surface of the touch display panel, a large amount of electric field lines generated by coupling of the signal enhancement layer are attracted to the operator's finger, thereby increasing the amount of change in capacitance, and the sensitivity of the touch display panel is further improved.
Abstract:
The present invention relates to the field of display technology, and provides a touch display device and its driving method, so as to increase the time spent for scanning a touch signal. In the method for driving the touch display device, the touch display device comprises n display regions, each of which corresponding to a plurality of rows of pixels, and n is an integer greater than or equal to 2. The method comprises the step of: during a progressive scanning procedure, scanning one of the n display regions and outputting a display signal to the scanned display region, and at the same time inputting a touch signal to the remaining n−1 display regions that are not scanned.