Abstract:
The present invention relates to an acid catalyzed thermal polycondensation process for producing amino acid polymers. More specifically, amino acid polymers are produced by thermally condensing a mixture of one or more amino acids and optionally one or more polyfunctional monomers, using an acid catalyst, while maintaining an intimate admixture. Processing techniques useful for maintaining an intimate admixture include adding to the mixture one or more processing aids, using mechanical means, and combinations thereof. The amino acid polymers produced by this process are useful as cleaning and detergent additives; fertilizer and pesticide additives; personal care product additives; dispersants for inorganic particulates, aqueous emulsions, and drilling muds; and water treatment and oil production operation additives as corrosion and scale inhibitors.
Abstract:
A process is provided for preparing polysuccinimides by forming a polymerization mixture of poly(alkylene glycol), aspartic acid and, optionally, one or more other amino acids; heating the mixture to an elevated temperature; and maintaining the mixture at the elevated temperature to form polysuccinimides.
Abstract:
The present invention provides water-soluble poylmers containing, as polymerized units: (a) from about 3 to about 95 percent by weight of one or more cyclohexene anhydrides or the alkali metal or ammonium salts thereof. The present further provides aqueous polymerization processes for making the polymers. The water-soluble polymers are useful as water-treatment additives for boiler waters and cooling towers and as detergent additives acting as builders, anti-filming agents, dispersants, sequestering agents and encrustation inhibitors.
Abstract:
Polysuccinimide polymers of from about 5 to 100 percent by weight of methylenesuccinimide moieties, and from 0 to about 95 percent by weight of one or more amino acid moieties are provided. A process is provided for preparing polysuccinimide polymers by forming a polymerization mixture of poly(alkylene glycol), ammonia, one or more monoethylenically unsaturated poly(carboxylic acids) and, optionally, one or more other monoethylenically unsaturated compounds; heating the mixture to an elevated temperature; and maintaining the mixture at the elevated temperature to form polysuccinimide polymers.
Abstract:
Copolymers of aliphatic monoethylenically unsaturated dicarboxylic acids and unsaturated monomers have been formed by gradually and simultaneously adding monomers and initiator, in the presence of a metal salt activator, to a reaction vessel initially containing water at a temperature suitable for polymerization. These copolymers have consistent compositions and superior properties as antiscalants, dispersants and incrustation inhibitors.
Abstract:
Polymers of itaconic acid are formed at high conversion by an aqueous polymerization process of partially neutralized monomer solution, water, polyvalent metal ion and initiator.Polymers produced according to the process of the invention are useful as detergent additives, scale inhibitors and removers, sequestrants, yarn sizers, deflocculating agents, de-inking agents, suspending agents and dispersing agents.
Abstract:
Detergent compositions containing from 0.5 to about 50 percent by weight polysuccinimide are provided. These compositions have enhanced anti-encrustation, soil removal and anti-redeposition properties.
Abstract:
This invention is directed to a terpolymer containing as polymerized units at least one first monomer selected from the group of vinyl acetate, vinyl ethers and vinyl carbonates, at least one second monomer of an ethylenically unsaturated monocarboxylic acid, and at least one third monomer of an anhydride of a dicarboxylic acid. The terpolymer is formed by a free-radical polymerization in a nonaqueous solvent. It has further been discovered that the partial hydrolysis, saponification, and saponification followed by oxidation of this terpolymer leads to terpolymer derivatives with improved detergent properties and improved biodegradability.
Abstract:
Disclosed is a polymer and its preparation by reacting part of the monomers in the reactor in such a way as to obtain a high molecular weight product, and reacting at least one other portion of the monomer in the same reactor in such a way as to obtain at least one low molecular weight fraction. The products are useful in contact adhesives, particularly when blended with an aminoplast or phenoplast as a tackifier and crosslinker, and with a thickening agent such as polyvinyl alcohol.
Abstract:
Low molecular weight addition copolymers, of (1) (meth)acrylic acid esters of alcohols such as methanol and butanol with (2) esters of alcohols such as N-(.beta.-hydroxyethyl)oxazolidine and unsaturated acids such as a (meth)acrylic acid, and (3) optional .alpha.,.beta.-ethylenically unsaturated monomers such as a (meth)acrylic acid, are found to be exceptional dispersants for inorganic and organic pigments and colorants which are insoluble in organic solvents, for lacquers, and are compatible with practically all types of lacquer resins such as vinyls, nitrocellulose, and alkyds, and with many other types of lacquer film-forming materials. Usually, when small amounts of unsaturated carboxylic acids, or other polar monomers and combinations thereof, are incorporated in the polymers, they become improved pigment dispersants. Such pigment dispersions, unexpectedly, can be let down with many types of synthetic resins and used by air-drying or baking the coated articles. Lacquers for metals, paints and printing inks are examples of uses for such blends.