Abstract:
Techniques for computing and reporting channel quality indication (CQI) are described. In an aspect, a plurality of CQI computation methods may be supported, and each CQI computation method may indicate how CQI should be computed. One CQI computation method may be selected for use. CQI may then be computed and reported in accordance with the selected CQI computation method. In an exemplary design, a user equipment (UE) may obtain a selected method for computing CQI, which may be chosen based on the UE capability and/or other factors. The selected method may specify (i) CQI computation for a specific codeword among a plurality of codewords or (ii) CQI computation by averaging signal quality across a plurality of layers used for transmission. The UE may compute CQI in accordance with the selected method, send the CQI to a base station, and receive data sent by the base station based on the CQI.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE identifies properties associated with reference signals of a received payload. The properties associated with reference signals of the received payload may include a reference signal structure and/or a traffic to pilot ratio. The UE determines a payload structure based on the identified properties. Subsequently, the UE decodes the received payload based on the determined payload structure. The UE may receive mapping information indicating a mapping between possible properties associated with reference signals and possible payload structures. The UE may determine the payload structure further based on the received mapping information. The UE may receive the mapping information through a broadcast or RRC signaling.
Abstract:
Methods and apparatus for providing wireless communications using subframe partitioning are disclosed. Two or more base stations may be allocated subframes in a radio frame. All or part of the subframe allocation may be provided to the associated user equipment (UEs), which may use it to determine signal metrics during assigned subframes for an associated base station.
Abstract:
Certain aspects of the present disclosure provide various mechanisms that allow a user equipment to convey information regarding one or more attributes to a base station during a random access (RA) procedure. The attributes may include, for example a capability of the UE (e.g., to support a particular feature or version of a standard) or a condition of the UE (e.g., if it is currently experiencing an interference condition).
Abstract:
UE-assisted management of advanced radio link feature in a wireless communication network may include a network entity determining that a mobile entity is capable of communicating with one or more base stations using a set of radio link configurations, receiving a request from the mobile entity to restrict use of at least one of the radio link configurations, and restricting use of the at least one of the radio link configurations for communicating with the mobile entity, based on the request. The request may indicate a reason for the restriction, and the network entity may determine whether to restrict based on the reason. Once a radio link configuration is restricted, it may similarly be unrestricted based on a subsequent UE request, or based on expiration of a time period.
Abstract:
Methods and apparatus are provided for assigning interference measurement resources. A method includes receiving at least one identifier, which determines, at least in part, at least one interference measurement resource that partially overlaps with another at least one interference measurement resource. The at least one interference measurement resource comprises a number of resource elements out of a set of resource elements. The method also includes measuring interference based at least in part on the at least one interference measurement resource.
Abstract:
A method of wireless communication manages the reporting of battery power for UE relays. A UE capable of serving as a UE relay receives a battery status report configuration. The battery status may be based on rate of power consumption, percentage of total battery power remaining, characteristics of particular battery type, and/or allocation of battery usage. The UE may transmit a battery status report to a base station.
Abstract:
A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a new carrier type and the second carrier type is a legacy carrier type. Legacy UEs may only receive signals from the second carrier type. However, new UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting new UEs, an eNodeB may signal support of the first carrier type to a new UE while maintaining signaling with legacy UEs. Additionally, the eNodeB may restrict operations of a UE to the first set of resources or second set of resources.
Abstract:
A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a NCT (NCT) and the second carrier type is a LCT (LCT). LCT UEs may only receive signals from the second carrier type. However, NCT UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting NCT UEs, an eNodeB may signal support of the first carrier type to a NCT UE while maintaining signaling with LCT UEs.
Abstract:
A method of wireless communication includes receiving activation parameters at a low power node and detecting a proximity of an active user equipment (UE) based at least in part on the activation parameters. The activation parameters are triggered from a node different from the low power node, such as an eNodeB. The low power node initiates an activation sequence after detecting the active UE.