Methods for producing multifunctional catalysts for upgrading pyrolysis oil

    公开(公告)号:US10751710B1

    公开(公告)日:2020-08-25

    申请号:US16807433

    申请日:2020-03-03

    发明人: Miao Sun

    摘要: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, the first metal catalyst precursor, the second metal catalyst precursor, or both, including a heteropolyacid. Contacting the zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution from the multifunctional catalyst precursor and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the zeolite support.

    CARBON CATALYST, CELL ELECTRODE, AND CELL
    45.
    发明申请

    公开(公告)号:US20200243873A1

    公开(公告)日:2020-07-30

    申请号:US16629538

    申请日:2018-07-03

    摘要: A carbon catalyst, a battery electrode, and a battery each having excellent catalytic activity and excellent durability. The carbon catalyst includes iron, exhibits a weight reduction ratio in the temperature range from 200° C. to 1,200° C. of 12.0 wt % or less measured by thermogravimetric analysis in a nitrogen atmosphere, and has a carbon structure that exhibits, in X-ray absorption fine structure analysis of a K absorption edge of the iron, the following (a) and/or (b): (a) a ratio of a normalized absorbance at 7,130 eV to a normalized absorbance at 7,110 eV is 7.0 or more; and (b) a ratio of a normalized absorbance at 7,135 eV to a normalized absorbance at 7,110 eV is 7.0 or more.

    LOW-PLATINUM CATALYST BASED ON NITRIDE NANOPARTICLES AND PREPARATION METHOD THEREOF

    公开(公告)号:US20200164350A1

    公开(公告)日:2020-05-28

    申请号:US16726836

    申请日:2019-12-25

    摘要: The present invention discloses a low-platinum catalyst based on nitride nanoparticles and a preparation method thereof. A component of an active metal of the catalyst directly clades on a surface of nitride particles or a surface of nitride particles loaded on a carbon support in an ultrathin atomic layer form. Preparation steps including: preparing a transition-metal ammonia complex first, nitriding the obtained ammonia complex solid under an atmosphere of ammonia gas to obtain nitride nanoparticles; loading the nitride nanoparticles on a surface of a working electrode, depositing an active component on a surface of the nitride nanoparticles by pulsed deposition, to obtain the low platinum loading catalyst using a nitride as a substrate. The catalyst may be used as an anode or a cathode catalyst of a low temperature fuel cell, has very high catalytic activity and stability, can greatly reduce a usage amount of a precious metal in the fuel cell, and greatly reduces a cost of the fuel cell. The present invention has important characteristics of being controllable in deposition amount, simple and convenient to operate, free of protection of inert atmosphere, and etc., and is suitable for large-scale industrial production.

    Doped graphitic carbon nitrides, methods of making and uses of the same

    公开(公告)号:US10661257B2

    公开(公告)日:2020-05-26

    申请号:US15434959

    申请日:2017-02-16

    摘要: Carbon-doped graphitic carbon nitride (g-C3N4) compositions are synthesized from the chemical precursors melamine, cyanuric acid and barbituric acid. Phosphorus-doped g-C3N4 compositions are synthesized from the chemical precursors melamine, cyanuric acid and etidronic acid. Carbon- and phosphorus-doped g-C3N4 compositions, when in the presence of UV or visible light, can be used in water treatment systems to photocatalytically degrade persistent organic micropollutants such as pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), pesticides, and herbicides. Carbon- and phosphorus-doped g-C3N4 compositions can also be applied to surfaces of household and public items to kill protozoa, eukaryotic parasites, algal pathogens, bacteria, fungi, prions, viruses, or other microorganisms, preventing the transfer thereof between users.

    Methods for producing mesoporous zeolite multifunctional catalysts for upgrading pyrolysis oil

    公开(公告)号:US10639622B1

    公开(公告)日:2020-05-05

    申请号:US16502601

    申请日:2019-07-03

    摘要: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a hierarchical mesoporous zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, each or both of which may include a heteropolyacid. The hierarchical mesoporous zeolite support may have an average pore size of from 2 nm to 40 nm. Contacting the hierarchical mesoporous zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support.