Abstract:
A two-stage servo-valve has a first stage in which four flow resistances are arranged in a bridge circuit. At least one of the flow resistances is variable, and two opposite switching points of the bridge circuit are connected to an air inlet and to an air outlet respectively. A differential pressure of variable size and sign is provided between the two other switching points. The servo-valve also has a second stage in which a control piston which can be actuated by the differential pressure is arranged and controls a three-way valve. In order to enable the current position of a process valve driven by the servo-valve to be maintained by the most simple means in the event of a power failure, the switching points which provide the differential pressure are interconnected by a magnetic valve which is closed in the driven state and open in the unconnected state, thus pneumatically interconnecting the switching points.
Abstract:
Two connected valve units each formed by serially connecting plural electromagnetic valves in a direct abutment state are disposed in parallel between two end blocks. The two end blocks are tightened with plural connecting bolts disposed therebetween so as to directly clamp and fix the two connected valve units from both sides in the serial connection direction of the electromagnetic valves. One of the end blocks is provided with a power supply connector, and the other is provided with an air inlet port and a discharge port.
Abstract:
A multi-way valve has a housing with a stepped bore forming two piston guiding regions and a shoulder ring with two sealing shoulders. The housing also has a first, second and central transverse bores which are spaced along the cylindrical bore. A contact piston has a piston rod and sealing members secured thereon. The guide members are pressed fit onto opposite ends of the piston rod.
Abstract:
A valve section that functions as a solenoid valve device that includes a pressure adjusting section that adjusts fluid pressure supplied from a fluid pressure source; a pump section that sucks and discharges working fluid in a reservoir; and a single solenoid section that drives the pressure adjusting section and the pump section.
Abstract:
To obtain a manifold type solenoid valve assembly in which an solenoid valve which is equipped with an output port and an solenoid valve which is equipped with no output port are mixed and mounted on a common manifold base. On a valve mounting part of the manifold base which has a plurality of the valve mounting parts of the same type, a first solenoid valve which is equipped with an output port for external piping connection is mounted and a second solenoid valve which is equipped with no output port is indirectly mounted through an intermediate block which is indirectly equipped with an output port for the second solenoid valve.
Abstract:
A solenoid actuated pilot valve includes a pilot valve housing defining a pilot valve chamber and a solenoid. The solenoid includes and end cap connected to the pilot valve housing, a reciprocable plunger, and a piston having a shaft with a first end connected to and end of the plunger and a second end connected to a piston head. The end cap has a bore through which the shaft of the piston reciprocates and a first port separate from the bore. A first seal on a first side of the piston head is provided for sealing a first end of the first port. A second seal on a second side of the piston head is provided for sealing a first end of a second port in the pilot valve housing.
Abstract:
A hydraulic control system for high flow applications in motor vehicles, in particular for active wheel suspensions and active steering arrangements, includes at least one passive high flow valve which is controlled hydraulically by at least one low flow valve.
Abstract:
A pilot valve configured to provide a control pressure within a dynamic fluid system, the pilot valve comprising: (a) a valve body having a supply port, a return port, and a control pressure port, the pressure control port in fluid communication with a subsequent valving component; (b) an axial bore formed in the valve body and in fluid communication with each of the supply, return, and control pressure ports; (c) a valve spool slidably supported within the axial bore of the valve body, the valve spool configured to control fluid flow through the supply, return, and control pressure ports, and to vary the rate of change of area of at least one of the supply and return pressure ports upon being displaced, thereby providing a variable resistance to fluid flowing therethrough and reducing the quiescent power of the pilot valve; and (d) means for displacing, in a selective manner, the valve spool within the axial bore about the supply, return, and control pressure ports to apportion fluid therethrough to provide a desired control pressure to the subsequent valving component. The pilot valve further comprises a feedback port formed in the valve body and in fluid communication with the control pressure port; and a feedback passage in fluid communication with the feedback port and a portion of the valve spool, the feedback passage configured to receive pressurized fluid therein to act against the valve spool to balance the forces acting on the valve spool from the motor.
Abstract:
A valve for controlling fluid flow in a fluid system is disclosed. The valve includes a housing, a servo spool, and a piston. The servo spool defines a spiral groove and a spiral land. The piston defines an orifice configured to provide flow communication to a supply of pressurized fluid and an orifice configured to provide flow communication to a portion of the fluid system exterior to the valve. The valve further includes a main spool operably coupled to the piston. The main spool is configured to control flow of fluid in the fluid system. The spiral groove and spiral land are configured such that angular displacement of the servo spool results in a force imbalance on the piston, thereby moving the piston and the main spool in one of a first direction and a second direction.
Abstract:
A control valve assembly includes a valve body having a valve opening, a first pressure passage, a second pressure passage, and a valve body land. A valve member is received in the valve opening for movement between an open position and a closed position. The valve member includes a first valve member land and a second valve member land. The first valve member land and the valve body land cooperate to define a first metering flow passage and a second metering flow passage. The first and second metering flow passages are configured to impart a hydrodynamic force on the valve member during fluid flow through the valve body, which biases the valve member toward the open position or the closed position.