CRANIAL INSERTION PLACEMENT VERIFICATION

    公开(公告)号:US20210186626A1

    公开(公告)日:2021-06-24

    申请号:US17191297

    申请日:2021-03-03

    Abstract: A method for verifying surgical tool placement includes attaching a guide sleeve to a surgical robot, the guide sleeve defining a guide sleeve axis; aligning the surgical robot such that the guide sleeve axis is directed at a predetermined target location; and attaching an aiming rod to the guide sleeve such that the aiming rod can rotate around the guide sleeve axis, the aiming rod having apertures along its length. The aiming rod is attached to the guide sleeve at an angle and position such that when the surgical robot is adjusted to align the guide sleeve axis with the predetermined target location, a center of each aperture of the apertures of the aiming rod and a center of the predetermined target location are collinear, independent of a rotational position of the aiming rod around the guide sleeve axis.

    MULTI-ARM ROBOTIC SYSTEM FOR SPINE SURGERY WITH IMAGING GUIDANCE

    公开(公告)号:US20210186615A1

    公开(公告)日:2021-06-24

    申请号:US17130516

    申请日:2020-12-22

    Abstract: Systems and methods for monitoring a surgical procedure are provided. A coordinate system of a first robotic arm and a second robotic arm may be co-registered or correlated to each other. One or more poses of an imaging device may be determined to provide real-time intraoperative imaging of a region of interest during a surgical procedure. Anatomical elements may be identified in the real-time images of the region of interest from which a surgical tool should maintain a predetermined distance. The surgical tool may be prevented from approaching the identified anatomical elements by less than a predetermined distance using the co-registration of the coordinate systems.

    MINIMALLY INVASIVE INTERVERTEBRAL ROD INSERTION

    公开(公告)号:US20210137603A1

    公开(公告)日:2021-05-13

    申请号:US17096757

    申请日:2020-11-12

    Abstract: A system and method for the minimally invasive insertion of an intervertebral rod into the vertebrae of a subject, according to a preoperative surgical plan also defining positions for the insertion of rod clamping screws into the vertebrae. The rod shape for connecting the heads of the screws is calculated, and a path planning algorithm used to determine whether the distal end of the rod can be threaded through the screw heads by longitudinal and rotational manipulation of the proximal end of the rod. If so, instructions are provided for forming that rod shape and for the robotic insertion of the screw holes and the rod. If not, either or both of the screw positions and the rod shape are adjusted, to moderate the bends in the rods, until insertion becomes possible. The insertion can be performed robotically, or, if a navigation tracking system is added, manually.

    SEMI-RIGID BONE ATTACHMENT ROBOTIC SURGERY SYSTEM

    公开(公告)号:US20210059774A1

    公开(公告)日:2021-03-04

    申请号:US17039597

    申请日:2020-09-30

    Abstract: A bone connection system for attaching a surgical robot having its base mounted in the vicinity of a patient, to a bone of the patient. The system incorporates a switchable bone connection unit attached between the bone and a support element of the robot. This unit has a locked state in which the bone is attached essentially rigidly to the support element, and a released state in which the bone can move relative to the support element. The unit comprises a force sensor for determining the force exerted between the bone and the support element of the robot, and a position sensor for measuring the position of the bone relative to the support element of said robot. The unit switches from its locked state to its released state when the force exceeds a predetermined level, selected to ensure that the bone can move without detaching any bone connection elements.

    On-site verification of implant positioning
    47.
    发明授权
    On-site verification of implant positioning 有权
    现场验证植入物定位

    公开(公告)号:US09545233B2

    公开(公告)日:2017-01-17

    申请号:US14402696

    申请日:2013-05-21

    Abstract: A method verifying the position of a surgically inserted orthopedic insert. A preoperative three dimensional image data set of the surgical site is generated, showing the bone into which the insert is to be inserted. During the insertion procedure, a series of intraoperative two-dimensional fluoroscope images are generated, each at a known pose relative to the bone, showing the insert during or after insertion into the bone. The 3-D position of the insert is determined in an intraoperative three dimensional image data set reconstructed from the series of intraoperative 2-D fluoroscope images. The reconstructed intraoperative 3-D image data set is registered with the preoperative three dimensional image data set, such as by comparison of imaged anatomical features. Once this registration is achieved, the determined 3-D position of the insert is used to implant a virtual image of the insert into the preoperative three dimensional image data set.

    Abstract translation: 一种验证手术插入的整形外科插入物的位置的方法。 产生手术部位的术前三维图像数据集,显示插入物插入其中的骨骼。 在插入过程期间,产生一系列术中二维荧光镜图像,每个以相对于骨骼的已知姿势生成,在插入骨骼期间或之后显示插入物。 插入物的3-D位置是在从一系列术中2-D荧光镜图像重建的术中三维图像数据集中确定的。 例如通过比较成像的解剖特征,将重建的术中3-D图像数据集与术前三维图像数据集进行配准。 一旦达到该注册,则使用所确定的插入物的3-D位置将插入物的虚拟图像植入到术前三维图像数据集中。

    SYSTEMS AND METHODS FOR REGISTERING ONE OR MORE ANATOMICAL ELEMENTS

    公开(公告)号:US20250152261A1

    公开(公告)日:2025-05-15

    申请号:US19025579

    申请日:2025-01-16

    Abstract: Systems and methods for registering one or more anatomical elements are provided. The system may comprise an imaging device and a navigation system configured to track a pose of a marker coupled to an object and configured to identify the marker. A first image may be received from a surgical plan. Pose information describing the pose of the marker and a marker identification of the marker may be obtained from the navigation system. An object identification based on the marker identification may be retrieved from a database. Image data of a second image depicting an anatomical element and the object may be obtained from the imaging device. The image data, the pose information, and the object identification may be input into a registration model. The registration model may be configured to register the anatomical element to the first image based on the pose information and the object identification.

    REUSABLE REGISTRATION KIT FOR SPINAL ROBOTICS

    公开(公告)号:US20250143811A1

    公开(公告)日:2025-05-08

    申请号:US18835987

    申请日:2022-02-15

    Abstract: A robotic registration kit according to at least one embodiment of the present disclosure includes an elongate arm (304) extending from a proximal end (302) to a distal end (306) including a target receiving surface (308) and a robot mount bracket (312) including a robot attachment surface (358), a clamp screw (316), including a bracket contact surface in contact with the robot mount bracket (312) and a threaded outer surface (322), rotationally attached to the robot mount bracket (312) allowing the clamp screw (316) to rotate and preventing axial movement of the clamp screw (316), and a clamp (320) including a plate (324) with a threaded hole (328) running therethrough and a finger (332) extending a distance to a clamp end including a hook portion (336) disposed proximally past the robot attachment surface (358) of the robot mount bracket (312). The clamp (320) is moveable between a clamped state and an unclamped state by a rotational movement of the clamp screw (316) relative to the clamp (320).

    Versatile multi-arm robotic surgical system

    公开(公告)号:US12268457B2

    公开(公告)日:2025-04-08

    申请号:US17285374

    申请日:2019-10-15

    Abstract: A robotic surgical system comprising at least two robotic arms having co-ordinate systems known relative to each other, one of the arms carrying an X-ray source, and the other an imaging detector plate. The arms are disposed to enable an image to be generated on the region of interest of a subject. One of the arms can additionally or alternatively carry a surgical tool or tool holder, such that the pose of the tool is known in the same co-ordinate system as that of an image generated by the X-ray source and detector. Consequently, any surgical procedure planned on such an X-ray image can be executed by the tool with high accuracy, since the tool position is known in the image frame of reference. This enables the surgeon to accurately position his tool in a real-time image without the need for an external registration procedure.

Patent Agency Ranking