Abstract:
A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
Abstract:
A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
Abstract:
Various embodiments include interconnects for semiconductor structures that can include a first conductive structure, a second conductive structure and a non-hardening liquid conductive material in contact with the first and second structure. Other embodiments include semiconductor components and imager devices using the interconnects. Further embodiments include methods of forming a semiconductor structure and focusing methods for an imager device.
Abstract:
An image sensor unit has stacked imager and processor integrated circuits. The imager may have an image sensor pixel array on its front surface. Processor die may be mounted back-to-back with respective imagers on a wafer. A photodefinable dielectric film may cover the rear surface of the wafer. Metal traces in the photodefinable dielectric and through-silicon vias in each imager may be used to interconnect the processing circuitry on the front surface of a processor to the image sensor pixel array on the front surface of the imager. Openings may be formed in the photo definable dielectric to allow solder balls to form electrical connections with the metal traces. A cavity may be formed in a photo definable dielectric layer or an imager to accommodate the processor. The processor may also be mounted in a cavity in a separate silicon standoff structure before attaching the standoff structure to the imager.
Abstract:
A lens stack having a movable lens attached to a MEMS structure and method of fabricating the same. The method comprises attaching at least one MEMS structure to a transparent substrate. The method further comprises forming a movable lens in contact with the at least one MEMS structure.
Abstract:
Methods of fabricating a microlens and/or array of microlenses used to focus light on photosensors, by forming a protective coating over a microlenses precursor material, and etching the protective coating and microlens precursor material to obtain a predetermined shape.
Abstract:
A method and apparatus to fabricate a patterned structure using a template supported on a carrier. The method includes patterning a material to conform to the patterned structure. The patterned material is cured while remaining on the template. The carrier is removable during the curing process. The template is later removed from the patterned material to obtain the patterned structure. A patterning device is also provided, which is formed by a template and a carrier releasably attached to each other. The template and the carrier can be separated from each other when the patterning device is subjected to curing of the patterned structure.
Abstract:
Embodiments of the present invention relate to an image sensor that may be used for digital photography. One embodiment of the present invention may include an image sensor comprising a substrate, a plurality of pixel cell arrays disposed on the substrate, a first array of the plurality of pixel cell arrays including pixels of a first size, a second array of the plurality of pixel cell arrays including pixels of a second size, the second size differing from the first size, and a plurality of photographic lenses, each of the plurality of photographic lenses arranged to focus light onto one array of the plurality of pixel cell arrays.
Abstract:
Methods and apparatus are provided. An image sensor has an array of light sensing elements and a transparent cover overlying the array of light sensing elements. The cover has a first roughened surface facing the array of light sensing elements and a second roughened surface facing away from the light sensing elements.
Abstract:
A method and apparatus for improving the planarity of a recessed color filter array when the recessed region or trench depth exceeds the thickness of the color filter film. The method includes the steps of coating the entire wafer with an additional coating material after applying the CFA, then planarizing that resist layer using CMP and then using a dry etch to transfer that planar surface down as far as required to achieve a planar color filter with a uniform thickness.