Abstract:
An exemplary prism sheet includes a transparent main body. The main body includes a first surface, a second surface and a plurality of conical frustum micro-depressions and a plurality of triangular pyramidal micro-depressions. The first surface and the second surface are on opposite sides of the main body. The conical frustum micro-depressions are formed in the first surface and the triangular pyramidal micro-depressions are formed in the second surfaces. A backlight module using the present prism sheet is also provided.
Abstract:
An exemplary optical plate includes at least one transparent plate unit. The transparent plate unit includes a light output surface, a bottom surface, a plurality of through holes and at least one lamp-receiving portion. The light output surface is opposite to the bottom surface. Each of the through holes communicates the light output surface with the bottom surface. The lamp-receiving portion is defined in the bottom surface. A backlight module using the present optical plate is also provided.
Abstract:
A light diffusion plate includes a first surface and an opposite second surface. The first surface defines a plurality of first elongated arc-shaped grooves and a plurality of second elongated arc-shaped grooves therein. A width of the first elongated arc-shaped grooves decreases and a width of the second elongated arc-shaped grooves increase along the direction from one side to another side. The second surface forms a plurality of first elongated arc-shaped protrusions and a plurality of second elongated arc-shaped protrusions thereon. A width of the first elongated arc-shaped grooves decreases gradually and a width of the second elongated arc-shaped grooves increases gradually along the direction from one side to another side. A width of the first elongated arc-shaped protrusions decreases gradually and a width of the second elongated arc-shaped protrusions increases gradually along the direction from one side to another side.
Abstract:
An optical plate has a first surface and an opposite second surface. The first surface is substantially planar. A plurality of substantially parallel elongated V-shaped protrusions and a plurality of substantially parallel elongated arc-shaped protrusions are formed on the second surface of the transparent main body. Each elongated arc-shaped protrusion intersects with each elongated V-shaped protrusion. A backlight module using the optical plate is also provided.
Abstract:
An exemplary holding frame (20) is for fixing lamp pairs (31) having electrode holders (311) and lamps wires (312), and includes a top surface (201), a bottom surface (202), an inner surface (203), and an outer surface (204). The top surface defines plural electrode receiving openings (2011). The bottom surface defines plural wiring openings (2021). The outer surface defines plural electrode groove pairs (2041), and each electrode groove of each of the electrode groove pairs communicates between a respective one of the wiring openings and a respective one of the electrode receiving openings. The electrode groove pairs are configured for receiving the electrode holders of the lamp pairs. The bottom surface defines plural wiring channels (2022), and each wiring channel communicates between the wiring openings at a corresponding electrode groove pair. The wiring channels configured for receiving selected portions of the lamps wires.
Abstract:
A lamp-fixing device includes a base and at least one receiving unit. The receiving unit is formed on the base. The receiving unit includes two opposite protruding walls extending perpendicular out from the base. The two protruding walls and the base cooperatively define a receiving space used to receive one end of a lamp tube with an electrode holder. The two protruding walls and the base each define a heat dissipation hole therein of the receiving space.
Abstract:
An optical plate includes a first surface and a second surface opposite to the first surface. A plurality of elongated, arc-shaped depressions is defined in the first surface. A plurality of first elongated, V-shaped protrusions aligned in a first direction and a plurality of second elongated, V-shaped protrusions aligned in a second direction are protruded from the second surface. The first direction and the second direction cooperatively define an angle which is larger than 0 degrees and less than 90 degrees.
Abstract:
An optical plate (32) includes a transparent plate (321) and a light diffusion layer (322). The transparent plate includes a light output surface (3211), a light input surface (3213) opposite to the light output surface, and a plurality of spot-shaped depressions (3215) at the light input surface. The light diffusion layer is coated on the light input surface and the spot-shaped depressions, and covers the light input surface completely. The light diffusion layer includes transparent resin matrix material, and first and second light diffusion particles dispersed in the transparent resin matrix material uniformly. A refractive index of the second light diffusion particles is greater than that of the first light diffusion articles. A backlight module (30) using the present optical plate is also provided. The backlight module using the optical plate can have a thin body with a good optical performance.
Abstract:
An exemplary bottom lighting type backlight module includes a frame, a plurality of light sources, a reflecting sheet and at least one optical sheet. The frame includes a base and a plurality of sidewalls extending from the peripheral of the base to define an opening. The base defines a plurality of guide holes. Each optical sheet is disposed on the opening of the frame. The at least one optical sheet and the frame collectively define a chamber. The reflecting sheet is supported by the sidewalls, for partitioning the chamber into an illumination space and a heat dissipation space. The reflecting sheet defines a plurality of through holes therein. The light sources are arranged on the base of the frame under the reflecting sheet according to the through holes, illuminating light through the through holes towards the at least one optical sheet.
Abstract:
An exemplary optical plate includes at least one transparent plate unit. The transparent plate unit includes a light output surface, a bottom surface, a plurality of microstructures and at least a lamp-receiving portion. The bottom surface is opposite to the light output surface. The microstructures are formed on the light output surface and the bottom surface respectively. Each microstructure includes at least three side surfaces connected with each other, a transverse width of each side surface decreasing along a direction away from the base surface of the microstructure. The lamp-receiving portion is defined in the bottom surface. A backlight module using the present optical plate is also provided.