Abstract:
An organic light emitting diode display comprises a substrate including a display area in which a pixel is disposed and a peripheral area surrounding the display area, a driving semiconductor layer disposed in the display area on the substrate, a driving gate electrode disposed in the display area on the driving semiconductor layer, a common voltage line disposed in the peripheral area on the substrate and disposed on a same layer as the driving gate electrode, a gate electrode anti-oxidation layer disposed on the driving gate electrode, a common voltage line anti-oxidation layer disposed on the common voltage line, an interlayer insulating layer disposed on the driving semiconductor layer, the driving gate electrode, the common voltage line, the gate electrode anti-oxidation layer, and the common voltage line anti-oxidation layer. A driving source electrode and a driving drain electrode are disposed in the display area on the interlayer insulating layer, and a common voltage applying electrode is disposed in the peripheral area on the interlayer insulating layer and on the same layer as the driving source electrode and the driving drain electrode.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a substrate including a display area configured to display an image and a transmission area positioned on a periphery of the display area, a first insulating layer positioned in the display area and the transmission area and a thin film transistor positioned in the display area and formed on the first insulating layer. The OLED display also includes a second insulating layer positioned in the display area and the transmission area and covering the thin film transistor and an organic light-emitting element positioned in the display area and formed on the second insulating layer. The second insulating layer has a first transmission hole exposing a portion of the first insulating layer on the transmission area, and a spacer is positioned on the first insulating layer in the transmission hole.
Abstract:
An organic light emitting diode (OLED) display includes an OLED display panel having a substrate; a plurality of scan lines formed on the substrate; a plurality of data lines crossing the plurality of scan lines; cover lines covering the data lines; a plurality of switching elements coupled to the plurality of scan lines and the plurality of data lines; and a plurality of organic light emitting diodes coupled to the plurality of switching elements; and upper and lower data drivers respectively located at upper and lower parts of the OLED display panel, wherein the data lines include an upper data line and a lower data line that are separated from each other, and the cover lines include upper and lower cover lines that are separated from each other.
Abstract:
An organic light emitting diode (OLED) display includes an OLED display panel having a substrate; a plurality of scan lines formed on the substrate; a plurality of data lines crossing the plurality of scan lines; cover lines covering the data lines; a plurality of switching elements coupled to the plurality of scan lines and the plurality of data lines; and a plurality of organic light emitting diodes coupled to the plurality of switching elements; and upper and lower data drivers respectively located at upper and lower parts of the OLED display panel, wherein the data lines include an upper data line and a lower data line that are separated from each other, and the cover lines include upper and lower cover lines that are separated from each other.
Abstract:
A touch sensing unit includes first touch electrodes, a first touch signal line, and a second touch signal line. The first touch electrodes are disposed in a touch sensor area. The first touch signal line is electrically connected to some of the first touch electrodes arranged in a first column. The second touch signal line is electrically connected to some of the first touch electrodes arranged in a second column different from the first column. The second touch signal line includes a first bent portion bent at least once in an intersection region of the first touch signal line and the second touch signal line.
Abstract:
A touch sensing unit includes first touch electrodes, a first touch signal line, and a second touch signal line. The first touch electrodes are disposed in a touch sensor area. The first touch signal line is electrically connected to some of the first touch electrodes arranged in a first column. The second touch signal line is electrically connected to some of the first touch electrodes arranged in a second column different from the first column. The second touch signal line includes a first bent portion bent at least once in an intersection region of the first touch signal line and the second touch signal line.
Abstract:
A display device includes a substrate including a display area at which an image is displayed and a non-display area which is adjacent to the display area, and in the non-display area a common voltage transmitting line which is connected to the display area and through which a common voltage is provided to the display area, an organic insulating layer between the common voltage transmitting line and the substrate, a first opening which is in the common voltage transmitting line and exposes the organic insulating layer to outside the common voltage transmitting line and an auxiliary electrode which faces the organic insulating layer with the common voltage transmitting line therebetween, contacts the common voltage transmitting line at the first opening and covers the first opening.
Abstract:
Provided is a display device including a display unit including a display area, a transmitting portion surrounded by the display area, and a non-display area surrounding the display area, and a touch sensing unit having a transmissive area, dummies overlapping the transmitting portion and surrounding the transmissive area, and a touch sensor area surrounding the dummies and including first touch electrodes, and second touch electrodes respectively between the first touch electrodes, connected in a first direction, and spaced apart in a second direction perpendicular to the first direction, wherein the dummies include a main dummy surrounding the transmissive area, and at least one sub-dummy surrounding the main dummy, and wherein an outermost sub-dummy of the at least one sub-dummy that is at an outermost position of the dummies includes a first cut corresponding to a gap between adjacent first and second touch electrodes among the first and second touch electrodes.
Abstract:
A display device includes: a substrate; an insulating layer on the substrate and including a first opening; a first panel pad on the substrate and the insulating layer; and an anisotropic conductive film on the first panel pad, and the first panel pad includes a center area located at a center of the first opening, and a first edge area and a second edge area arranged along a lateral side of the insulating layer and located on respective sides of the center area with respect to a first direction, and the anisotropic conductive film overlaps at least one of the center area, the first edge area, and the second edge area of the first panel pad.
Abstract:
An organic light emitting diode display includes a substrate, a semiconductor layer disposed on the substrate, a first insulating layer which covers the semiconductor layer, a first conductive layer disposed on the first insulating layer, a second insulating layer which covers the first conductive layer, a second conductive layer disposed on the second insulating layer, a third insulating layer which covers the second conductive layer, a third conductive layer disposed on the third insulating layer, a first organic layer which covers the third conductive layer, and a fourth conductive layer disposed on the first organic layer, where the fourth conductive layer includes a lower layer, a middle layer, and an upper layer, and the lower layer is disposed between the first organic layer and the middle layer, and includes a transparent conductive oxidization film.