Abstract:
An aircraft is provided and includes a fuselage, first and second wings extending outwardly from opposite sides of the fuselage, proprotors operably disposed on each of the first and second wings to drive vertical take-off and landing aircraft operations and horizontal flight aircraft operations and a refueling system including at least one fuel tank disposed in at least one or more of the fuselage, the first wing or the second wing and a refueling apparatus. The refueling apparatus is coupled to the at least one fuel tank such that fuel is movable with respect to the at least one fuel tank during aircraft ground and aerial operations.
Abstract:
An electrically powered of the vertical takeoff and landing aircraft configured for use with a tether station having a continuous power source is provided including at least one rotor system. The vertical takeoff and landing aircraft additionally has an autonomous flight control system coupled to the continuous power source. The autonomous flight control system is configured to operate an electrical motor coupled to the at least one rotor system such that the vertical takeoff and landing aircraft continuously hovers above the tether station in a relative position. The vertical takeoff and landing aircraft also includes a detection system for detecting objects at a distance from the vertical takeoff and landing aircraft.
Abstract:
A drive system for a rotorcraft includes at least one engine, the engine including a compressor section, and a turbine section positioned rearward from the compressor section. A main rotor input shaft extends from a rotor power turbine of the turbine section and is connectable to a main rotor assembly of the rotorcraft to transfer rotational energy from the rotor power turbine to the main rotor assembly. An auxiliary input shaft extends from an auxiliary power turbine of the turbine section and is connectible to an auxiliary rotor assembly of the rotorcraft to transfer rotational energy from the auxiliary power turbine to the auxiliary rotor assembly.
Abstract:
A rotor system of a tail-sitter aerial vehicle configured to rotate about an axis of rotation is provided including a rotor hub which rotates about the axis of rotation and at least one rotor blade operably coupled to the rotor hub. The at least one rotor blade is configured to rotate about a folding axis between an extended position where the at least one rotor blade is substantially within a plane perpendicular to the axis of rotation and a stowed position where the rotor blade is arranged out of the plane of at an angle less than ninety degrees to the axis of rotation.
Abstract:
An aircraft is provided and includes a fuselage from which a tilt-wing respectively extends, first prop-rotors, which are formed to define first rotor disks and which are respectively disposed on first portions of each side of the tilt-wing, second prop-rotors, which are formed to define second rotor disks and which are respectively disposed on second portions of each side of the tilt-wing such that the corresponding pairs of first and second rotor disks overlap, and a drive shaft system. The drive shaft system is configured to synchronize respective operations of the first and second prop-rotors.
Abstract:
An aircraft includes a fuselage defining an aircraft attitude axis. The fuselage houses an engine fixed relative to the aircraft attitude axis. A rotor assembly is operatively connected to rotate back and forth relative to the aircraft attitude axis from a first position predominately for lift to a second position predominately for thrust. The rotor assembly includes a rotor that is operatively connected to be driven by the engine.
Abstract:
A fairing for a landing gear wheel assembly on a tail sitter aircraft is disclosed, which includes a fairing housing defining a longitudinal axis, and at least one pair of laterally opposed aerodynamic tail surfaces extending radially outward from the fairing housing for added flight stability.
Abstract:
An aircraft is provided and includes a fuselage, first and second wings extending outwardly from opposite sides of the fuselage, proprotors operably disposed on each of the first and second wings to drive vertical take-off and landing aircraft operations and horizontal flight aircraft operations and a refueling system including at least one fuel tank disposed in at least one or more of the fuselage, the first wing or the second wing and a refueling apparatus. The refueling apparatus is coupled to the at least one fuel tank such that fuel is movable with respect to the at least one fuel tank during aircraft ground and aerial operations.
Abstract:
An adjustable cable attachment system for a VTOL aircraft includes a VTOL airframe. A winch is operatively connected to an underside of the airframe with the aircraft in a horizontal flight mode. An adjustable cable is operatively connected to the winch to adjustably relocate a slung load with respect to the center of gravity of the aircraft to balance the aircraft. A fixed cable is operatively connected to the underside of the airframe with the aircraft in the horizontal flight mode.
Abstract:
A tiltwing aircraft includes a fuselage, an engine mounted stationary relative to the fuselage, and an opposed pair of wings. The wings are separated from each other with the fuselage therebetween, each wing independently mounted to the fuselage by a respective pivot system for rotation relative to the fuselage. An opposed pair of rotor assemblies is included, each operatively connected to a respective one of the wings for common rotation with the respective wing back and forth between a first position predominantly for lift to a second position predominantly for thrust.