Abstract:
An electronic device has a flexible display. An apparatus and method for providing the electronic device includes: a display unit formed of flexible material having at least one curved surface, a transformation unit coupled to at least part of the display unit, and a control unit configured to alter the transformation unit to deform the at least one curved surface of the flexible material of the display unit.
Abstract:
An electronic device and method are disclosed herein, the electronic device comprising a display unit, and at least one processor which may implement the method. The method may include detecting, an application being executing on a remote device, displaying a function menu associated with the application in the display unit, and in response to detecting a selection in the displayed function menu, transmitting a control signal corresponding to the selection to the remote device to control a particular function of the application.
Abstract:
An electronic device and a method operative therein monitor automatic wakeup events that occur during a power save mode. Wakeup events are monitored for respective applications executable within the electronic device. Applications with processing activity during the power save mode are then listed, on the basis of at least the monitored wakeup events. An indication of which apps are consuming battery power during the power save mode can then be obtained.
Abstract:
An electronic device and method in the same are disclosed. The electronic device includes a first and second housing, the second movable relative to the first, a flexible display having an exposure area configurable into a first size and a larger, second size, at least one sensor, and a processor. The processor implements the method, including: when detecting that the device is disposed in the first state, displaying a first content, based on detecting a first input, displaying a user interface (UI0 with the first content, based on detecting a second input to the UI, cancelling display of the UI, based on detecting a switch from the first state to the second state, maintaining display of the first content in a first area of the exposure area and displaying a second content in a second area of the exposure area.
Abstract:
An electronic device according to an embodiment of the disclosure may include a battery. The battery may include: an electrode assembly including a cathode substrate coupled to a cathode tab, an anode substrate coupled to an anode tab, and a separator sheet disposed between the cathode substrate and the anode substrate, and a pouch accommodating the electrode assembly, wherein the pouch includes a bonding portion provided along an edge of the electrode assembly, a first damage detection circuit configured to detect damage to the battery, and a circuit board to which the cathode tab, the anode tab, and the first damage detection circuit are electrically coupled. The battery may include a first portion, a second portion foldable with respect to the first portion, and a folding portion which couples the first portion and the second portion. The first damage detection circuit may extend from a first point of the circuit board to a single point of the second portion by crossing the first portion and the folding portion along an inside of the bonding portion, and extend from the single point of the second portion to a second point of the circuit board by crossing the folding portion and the first portion along the inside of the bonding portion.
Abstract:
An electronic device may comprise: a first cover; a second cover coupled to the first cover and configured to perform a sliding operation; a rollable display including a first display area visible in a rolled state and a second display area unrolled in response to the sliding operation of the second cover; a first antenna including a plurality of first antenna elements disposed in the first display area of the rollable display; a second antenna including a plurality of second antenna elements disposed in the second display area of the rollable display; and a processor. The processor may be configured to: form a plurality of directional beams using the first antenna based on a first beam table in a rolled state of the rollable display, and to form a plurality of directional beams using at least a part of the second antenna elements and the first antenna based on a second beam table based on the size of a visible area of the rollable display increasing from the rolled state.
Abstract:
A method, performed by an electronic device, of transmitting a mobile edge application, includes obtaining information related to an execution environment of at least one pre-installed mobile edge application, receiving an installation request for a new mobile edge application, determining a mobile edge computing host for installing the new mobile edge application, based on the information related to the execution environment and the requirement information related to an execution environment of the new mobile edge application, and transmitting the new mobile edge application to the determined mobile edge computing host.
Abstract:
An electronic device is provided. The electronic device includes a rollable display. The electronic device may include a main bracket configured to support the first portion of the rollable display, a roller member disposed in the first direction from the main bracket and arranged in a third direction perpendicular to the first direction, at least one folding support member disposed between the main bracket and the roller member and configured to support the second portion of the rollable display, a circuit board disposed to overlap at least a portion of the main bracket, at least one electronic component disposed adjacent to the roller member, and a FPCB configured to electrically connecting the main circuit board and the electronic component, wherein the FPCB is disposed to pass through the folding support member and extends from a portion of the circuit board to a portion of the electronic component.
Abstract:
An electronic device may comprise: a battery; a charging circuit; a wireless power receiver circuit configured to acquire transmitted power wirelessly output from an external electronic device; and a processor. The processor may be configured to control the electronic device to: charge the battery through the charging circuit using received power acquired through the wireless power receiver circuit; identify at least one piece of information related to the charging, while the charging operation is performed; transmit a designated signal corresponding to suspension of the transmitted power to the external electronic device such that the external electronic device enters a wireless charging standby mode, in which the external electronic device holds the operation of outputting the transmitted power, at least partially based on the at least one piece of information; identify first situation information regarding the electronic device during the wireless charging standby mode; identify second situation information regarding the electronic device, in response to identifying the first situation information; and sense the electronic device being detached from the external electronic device based on the electronic device corresponding to the first situation information and the second situation information.
Abstract:
Various embodiments of the present invention relate to wireless power transfer (WPT). An electronic device comprises a battery, a charging circuit for controlling a charging state of the battery, a coil, a wireless power transfer circuit electrically connected to the coil, and a control circuit, wherein the control circuit may be configured to: check a state related to charging of the battery; transfer a wireless charging parameter related to generation or modification of a power signal for transferring to an external electronic device via the coil, which is determined at least on the basis of the state related to charging of the battery; receive a response signal corresponding to the transfer of the wireless charging parameter from the external electronic device; generate, on the basis of the response signal, a power signal corresponding to the amount of wireless transmission power determined at least on the basis of the response signal by using the wireless power transfer circuit; and transfer the power signal to the external electronic device through the coil. In addition, various embodiments are possible.