Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for synchronization on a shared communication medium are disclosed. An access point may select, for example, a common sequence, frequency, and time for a first synchronization signal that is coordinated with one or more other access points. The access point may then transmit the first synchronization signal in accordance with the common sequence, frequency, and time. An access terminal may receive, from an access point, a first synchronization signal having a first sequence and a second synchronization signal having a second sequence. The access terminal may then determine an offset in time between the first synchronization signal and the second synchronization signal, and determine a cell identifier group associated with the access point based on the offset.
Abstract:
Techniques for managing access to a shared communication medium are disclosed. Scheduling grants may be sent to different access terminals for different sets of resources for uplink transmission on the communication medium. A series of re-contention gaps may be scheduled for access terminal contention within or between the different sets of resources. Uplink and downlink transmission on the communication medium may be silenced during each of the series of re-contention gaps. Moreover, an access terminal may receive a scheduling grant that allocates a set of resources to the access terminal for uplink transmission on a communication medium and contend for access to the communication medium based on the scheduling grant. The access terminal may then selectively transmit uplink traffic over the allocated set of resources based on the contending.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for communication are disclosed. A method may include selecting from a subframe two or more resource elements for control signaling, wherein the subframe includes a plurality of symbol periods and each symbol period includes a plurality of resource elements, wherein the selected two or more resource elements are associated with a concurrent symbol period, and transmitting a resource allocation message to an access terminal, wherein the resource allocation message indicates that the selected two or more resource elements are allocated for control signaling.
Abstract:
When communications of a single radio access technology (RAT), or different radio access technologies in a proximate communication spectrum are operating at the same time, potential interference between devices may occur. To reduce the interference, the time division duplex (TDD) configuration of one or more conflicting device may be altered. For example, at the edge of a communication region, TDD configurations used by edge base stations to communicate with mobile devices may be set to reduce interference. As another example, communications of a first device may be altered so the first device schedules uplink communications when a second device also has uplink communications scheduled. Other configurations may also be implemented.
Abstract:
An interference management scheme may detect a level of uncoordinated interference and compare a detected uncoordinated interference level against an intra-RAT (radio access technology) interference. Intra-RAT interference management algorithms or intra-RAT interference solutions are not triggered/applied if the uncoordinated interference is dominant. Alternatively, intra-RAT interference management algorithms may be triggered if co-channel intra-RAT interference is dominant.
Abstract:
Systems and methods are provided for optimizing resource usage by a network entity that detects a first channel condition for a first radio access technology (RAT) and a second channel condition for a second RAT. The network entity determines whether the first channel condition comprises a higher interference level than the second channel condition and also determines power consumption constraints. If the first channel condition comprises a higher interference level than the second channel condition, the network entity reassigns at least one antenna from the first RAT to the second RAT based at least in part on the power consumption constraints. In some embodiments, systems and methods are also provided for determining whether an access point serving an access terminal is a large cell base station or a small cell base station and determining a power management action for the access terminal.
Abstract:
A UE with a limited number of antennas may support multiple radio access technologies (RATS). In some instances, the UE may configure a shared antenna for use by a wireless local area network (WLAN) radio access technology (RAT) or a cellular RAT. The UE may also allocate the shared antenna to the WLAN RAT when the cellular RAT is active based at least in part on an operating condition of the WLAN RAT and/or the cellular RAT.