Positioning assisted resource configuration and selection for two-step random access channel procedure

    公开(公告)号:US11638309B2

    公开(公告)日:2023-04-25

    申请号:US17532895

    申请日:2021-11-22

    Abstract: In an aspect, a user equipment (UE) determines a resource configuration and a transmit power for a physical random access channel (PRACH) preamble sequence and/or a configuration and a transmit power for a physical uplink shared channel (PUSCH) resource unit (PRU) based on positioning information of the UE relative to the base station, the speed of the UE relative to the base station, and/or a radio resource control (RRC) state of the UE, transmits, to the base station, a message comprising the PRACH preamble sequence on a PRACH occasion and a payload on a PRU occasion based on the determined resource configuration and transmit power for the PRACH preamble sequence and/or the determined resource configuration and transmit power for the PRU, and receives, from the base station, a second message comprising information on a physical downlink control channel (PDCCH) and a payload on a physical downlink shared channel (PDSCH).

    SRS antenna switching for multiple receive antennas

    公开(公告)号:US11638217B2

    公开(公告)日:2023-04-25

    申请号:US17066115

    申请日:2020-10-08

    Abstract: This disclosure provides methods, devices and systems for channel sounding for wireless communications. Some implementations more specifically relate to scheduling sounding reference signal (SRS) resource sets for wireless devices having more than 4 receive (RX) antenna ports. In some implementations, a base station may determine an antenna switching capability of a user equipment (UE). The antenna switching capability indicates a number of RX antenna ports of the UE. The base station schedules a number of SRS resource sets for the UE based at least in part on the number of RX antenna ports in excess of four. For example, the number of RX antenna ports may be equal to 8. As another example, the number of RX antenna ports may be equal to 6. The base station further receives, from the UE, uplink transmissions of one or more SRS resources for each of the scheduled SRS resource sets.

    Time sensitive networking for positioning

    公开(公告)号:US11632737B2

    公开(公告)日:2023-04-18

    申请号:US17221619

    申请日:2021-04-02

    Abstract: A wireless network including user equipment (UE) and base stations is configured to perform position determination with low latency and high availability within the Time-Sensitive Networking (TSN) framework. For example, the UE may be integrated as a sensor in a motion control system or similar applications. The UE and base stations are synchronized with the TSN clock, and are configured to perform positioning measurements at a specific time point within the TSN framework. The time point, for example, may be a global sampling point, at which all sensor nodes in the TSN framework perform position measurements. A location server may be provided with the positioning measurements or a position estimate from the UE and provide the position estimate to an external client, such as a motion controller in a motion control system.

    Maximum number of path loss or uplink spatial transmit beam reference signals for downlink or uplink positioning reference signals

    公开(公告)号:US11576060B2

    公开(公告)日:2023-02-07

    申请号:US16871889

    申请日:2020-05-11

    Abstract: Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) receives, via one or more component carriers, one or more downlink reference signals from one or more serving or neighboring transmission-reception points (TRPs), wherein a number of the received one or more downlink reference signals is less than or equal to a maximum number of downlink path loss estimates, spatial transmit beam determinations, spatial receive beam determinations, or any combination thereof to be simultaneously maintained by the UE for positioning purposes, and wherein the maximum number does not include any downlink reference signals the UE is already monitoring for other purposes, and performs a downlink path loss estimate, a spatial transmit beam determination, a spatial receive beam determination, or any combination thereof at least based on each of the received one or more downlink reference signals.

    Interaction of discontinuous reception (DRX) with positioning reference signal (PRS) resources

    公开(公告)号:US11558162B2

    公开(公告)日:2023-01-17

    申请号:US16795399

    申请日:2020-02-19

    Abstract: Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) operating in discontinuous reception (DRX) mode receives a DRX configuration, receives a reference signal resource configuration, determines, at least based on the DRX configuration and the reference signal resource configuration, whether an overlap exists between a reference signal occasion of a plurality of reference signal occasions of the reference signal resource configuration and an active time of the DRX configuration, receives or transmits at least based on a determined overlap, at least a first reference signal in the reference signal occasion, and receives or transmits, while remaining in an active state of the DRX configuration, at least based on the determined overlap, at least a second reference signal in remaining reference signal occasions of the plurality of reference signal occasions after expiration of the active time.

    Computation complexity framework for positioning reference signal processing

    公开(公告)号:US11523364B2

    公开(公告)日:2022-12-06

    申请号:US16991920

    申请日:2020-08-12

    Abstract: Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) sends, to a network entity, a report indicating positioning capabilities of the UE, the positioning capabilities indicating a number of positioning calculations that the UE can perform per unit of time, per unit of frequency, or both, and performs a first set of positioning-related measurements of a set of positioning reference signal (PRS) resources and reports a second set of positioning-related measurements based on the reported positioning capabilities of the UE, the set of PRS resources to be used for the first and second sets of positioning-related measurements, a set of reporting parameters, an accuracy configuration, a latency configuration, or any combination thereof.

Patent Agency Ranking