Abstract:
A head-up display includes a display device and a projection optical system; the projection optical system includes first and second optical elements arranged in order of an optical path from the image; and when optical paths corresponding to an upper end and a lower end of the virtual image are defined as an upper ray and a lower ray, respectively, and a diverging effect and a converging effect are defined as being negative and positive, respectively, the first and the second optical elements satisfy conditional expressions P_u1−P_l1 0 (where P_u1 denotes a local power of the first optical element acting on the upper ray, P_l1 denotes a local power of the first optical element acting on the lower ray, P_u2 denotes a local power of the second optical element acting on the upper ray, P_l2 denotes a local power of the second optical element acting on the lower ray).
Abstract:
A display device is provided and may include a light source that emits a light beam, a scanner that causes the light beam to scan, a movable screen in which an image is formed by transmitting the light beam from scanner, an optical system configured to project the image on a display medium, and a driver configured to cause the movable screen to reciprocate in moving directions. The image includes a first image and a second image. The movable screen reciprocates in a posture inclined with respect to the moving directions such that a second end of the movable screen is positioned closer to the scanner than a first end of the movable screen. The scanner forms the second image in the movable screen while the movable screen moves such that a forming direction of the second image is inclined with respect to a direction approaching the scanner.
Abstract:
Head-up display, which is mounted on a vehicle, performs projection on a transparent reflective member, and allows an observer to visually recognize a virtual image, includes display device that displays an image, and a projection optical system that has refractive optical system and projects displayed image displayed by display device on eye box of the observer. As an angle formed between a vector of a light beam that is incident on refractive optical system and a vector of an output light beam, the angle is greater at a light beam on an image end passing through a vehicle inner side of refractive optical system than at a light beam on an image end passing through a vehicle outer side of refractive optical system.
Abstract:
A head-up display includes a first display device having a first display element and a combiner; a second display device including a second display element and a second optical system having a first mirror and a second mirror; and a housing having an opening. The first display element is disposed at a back of a vehicle relative to the opening, and the second mirror is disposed at a front of the vehicle relative to the opening.
Abstract:
A lens system including: a positive most-object-side lens unit; a first most-image-side lens element; and a second most-image-side lens element, wherein the most-object-side lens unit is fixed in focusing, at least one of the first and second most-image-side lens elements has negative optical power, and the conditions: 0.5