Abstract:
Systems and methods for performing optical image processing via a transparent display are disclosed. In one example approach, a method comprises determining a position of incident light on a see-through display device, determining a direction of the incident light relative to the see-through display device, and modulating, with the see-through display device, a transmission of the incident light through the see-through display device based on the determined position and determined direction of the incident light.
Abstract:
In embodiments of the invention, an apparatus may include a display comprising a plurality of pixels and a computer system coupled with the display and operable to instruct the display to display images. The apparatus may further include a microlens array located adjacent to the display and comprising a plurality of microlenses, wherein the microlens array is operable to produce a light field by altering light emitted by the display to simulate an object that is in focus to an observer while the display and the microlens array are located within a near-eye range of the observer.
Abstract:
A display method and system are disclosed for virtual/augmented reality. The method includes the steps of generating an image by a projection engine and projecting light rays defining the image onto a diffuser holographic optical element (DHOE) located between an observer and a concave mirror element, where a concave surface of the concave mirror element faces the observer. The light rays are projected onto the DHOE at a reference angle that causes the light rays to be diffused to the concave surface of the concave mirror element and the diffused light rays are reflected back to the observer such that the observer perceives a virtual image that appears to the observer at a position behind the concave mirror element and further from the observer than the concave mirror element.
Abstract:
A system, method, and computer program product are provided for producing images for a near-eye light field display. A ray defined by a pixel of a microdisplay and an optical apparatus of a near-eye light field display device is identified and the ray is intersected with a two-dimensional virtual display plane to generate map coordinates corresponding to the pixel. A color for the pixel is computed based on the map coordinates. The optical apparatus of the near-eye light field display device may, for example, be a microlens of a microlens array positioned between a viewer and an emissive microdisplay or a pinlight of a pinlight array positioned behind a transmissive microdisplay relative to the viewer.
Abstract:
A system, method, and computer program product are provided for generating anti-aliased images. The method includes the steps of assigning one or more samples to a plurality of clusters, each cluster in the plurality of clusters corresponding to an aggregate stored in an aggregate geometry buffer, where each of the one or more samples is covered by a visible fragment and rasterizing three-dimensional geometry to generate material parameters for each sample of the one or more samples. For each cluster in the plurality of clusters, the material parameters for each sample assigned to the cluster are combined to produce the aggregate. The combined material parameters for each cluster are stored in an aggregate geometry buffer. An anti-aliased image may then be generated by shading the combined material parameters.
Abstract:
A system, method, and computer program product are provided for producing images for a near-eye light field display. Defect information for a first pixel of a microdisplay of a near-eye light field display device is received and a second pixel of the microdisplay is identified, where the first pixel and the second pixel contribute to a portion of the retinal image. Based on the defect information, a value of the second pixel within an array of elemental images is modified to produce a corrected array of elemental images for display by the microdisplay. An optical apparatus of the near-eye light field display device may, for example, be a microlens of a microlens array positioned between a viewer and an emissive microdisplay or a pinlight of a pinlight array positioned behind a transmissive microdisplay relative to the viewer.
Abstract:
A system, method, and computer program product are provided for producing images for a near-eye light field display. Defect information for a first pixel of a microdisplay of a near-eye light field display device is received and a second pixel of the microdisplay is identified, where the first pixel and the second pixel contribute to a portion of the retinal image. Based on the defect information, a value of the second pixel within an array of elemental images is modified to produce a corrected array of elemental images for display by the microdisplay. An optical apparatus of the near-eye light field display device may, for example, be a microlens of a microlens array positioned between a viewer and an emissive microdisplay or a pinlight of a pinlight array positioned behind a transmissive microdisplay relative to the viewer.
Abstract:
A system, method, and computer program product are provided for producing images for a near-eye light field display. A ray defined by a pixel of a microdisplay and an optical apparatus of a near-eye light field display device is identified and the ray is intersected with a two-dimensional virtual display plane to generate map coordinates corresponding to the pixel. A color for the pixel is computed based on the map coordinates. The optical apparatus of the near-eye light field display device may, for example, be a microlens of a microlens array positioned between a viewer and an emissive microdisplay or a pinlight of a pinlight array positioned behind a transmissive microdisplay relative to the viewer.
Abstract:
In embodiments of the invention, an apparatus may include a display comprising a plurality of pixels. The apparatus may further include a computer system coupled with the display and operable to instruct the display to display a deconvolved image corresponding to a target image, wherein when the display displays the deconvolved image while located within a near-eye range of an observer, the target image may be perceived in focus by the observer.
Abstract:
A latent code defined in an input space is processed by the mapping neural network to produce an intermediate latent code defined in an intermediate latent space. The intermediate latent code may be used as appearance vector that is processed by the synthesis neural network to generate an image. The appearance vector is a compressed encoding of data, such as video frames including a person's face, audio, and other data. Captured images may be converted into appearance vectors at a local device and transmitted to a remote device using much less bandwidth compared with transmitting the captured images. A synthesis neural network at the remote device reconstructs the images for display.