Abstract:
A method for denoising images by block-matching three-dimensional (BM3D) method is disclosed in the present invention. Embodiments of the present invention are used to improve the quality of captured images. Instead of using the same noise variance to denoise all patches of an image, each patch is processed based on a particular assessed noise variance. The assessed noise variance of one reference patch is determined based on noise variance associated with the patch set or based on content characteristics associated with the patch set. The patch set is obtained by block-matching to find similar patches of the reference patch. Noise reduction in frequency domain is applied to the patch set according to the assessed noise variance of the reference patch. The determining of the assessed noise variance can be performed in spatial domain or in frequency domain.
Abstract:
A video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target bit allocation of a rate-controlled unit in video coding. Besides, a video coding apparatus has a visual quality evaluation module, a rate controller and a coding circuit. The visual quality evaluation module evaluates visual quality based on data involved in a coding loop. The rate controller refers to at least the evaluated visual quality for deciding a target bit allocation of a rate-controlled unit. The coding circuit has the coding loop included therein, and encodes the rate-controlled unit according to the target bit allocation.
Abstract:
One video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for performing de-blocking filtering. Another video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target coding parameter associated with de-blocking filtering.
Abstract:
A preview system of an image capture apparatus has a processing circuit and a display apparatus. The processing circuit reads an input image, scales at least a portion of the input image to generate a first preview image, and derives a second preview image from a selected portion of the input image. The display apparatus displays the first preview image and the second preview image, concurrently. Besides, a preview method for an image capture apparatus includes at least the following steps: reading an input image; scaling at least a portion of the input image to generate a first preview image; deriving a second preview image from a selected portion of the input image; and displaying the first preview image and the second preview image on a display apparatus, concurrently.