Abstract:
A motorized shading system may include a housing, a roller tube, a sheer shade material, and a bottom bar. The shading system may be configured such that opposed ends of the roller tube are adjustable relative to the housing. The shading system may include first and second sliding members that couple opposed ends of the roller tube to the housing and that are configured to translate along first and second rails defined by the housing. The bottom bar may define a cross-sectional profile such that when the shade material is in a closed position, a first lower most edge of the bottom bar is spaced from the roller tube by a first distance, and when the shade material is in a view position, a second lower most edge of the bottom bar is spaced from the roller tube by a second distance that is substantially equal to the first distance.
Abstract:
A motorized transitional shade system may move a covering material between open, closed, view, and privacy positions. The covering material may define respective pluralities of opaque and transparent sections that are arranged in an alternating pattern. A bottom bar that is movably supported by the covering material may define first and second portions of the covering material. The opaque and transparent sections in the first and second portions of the covering material may permit visibility through the covering material in a view position, and may impede visibility through the covering material in a privacy position. If movement of the covering material is halted at an intermediate position that is between the open and closed positions, the motorized transitional shade system may cause the motor to rotate the roller tube to move the covering material to a next lowest privacy position or to a next highest view position.
Abstract:
A window treatment can include a headrail that is configured to be mounted to a structure. A covering material can be attached to the headrail and configured to be raised and lowered. The window treatment can also include a bottom bar that is attached to an opposite end of the covering material as the headrail. The window treatment can also include a light source that is configured to illuminate a side of the covering material when the covering material is in a lowered position. In this manner, the light source may be configured to adjust the transparency level of the covering material to thereby adjust the privacy settings of the interior space that is enclosed by the window treatment.
Abstract:
A fabric selection tool provides an automated procedure for recommending and/or selecting a fabric for a window treatment to be installed in a building. The recommendation may be made to optimize the performance of the window treatment in which the fabric may be installed. The recommended fabric may be selected based on performance metrics associated with each fabric in an environment. The fabrics may be ranked based upon the performance metrics of one or more of the fabrics. One or more of the fabrics, and/or their corresponding ranks, may be displayed to a user for selection. The recommended fabrics may be determined based on combinations of fabrics that provide performance metrics for various façades of the building. Using the ranking system provided by the fabric selection tool, the user may obtain a fabric sample and/or order one or more of the recommended fabrics.
Abstract:
A fabric selection tool provides an automated procedure for recommending and/or selecting a fabric for a window treatment to be installed in a building. The recommendation may be made to optimize the performance of the window treatment in which the fabric may be installed. The recommended fabric may be selected based on performance metrics associated with each fabric in an environment. The fabrics may be ranked based upon the performance metrics of one or more of the fabrics. One or more of the fabrics, and/or their corresponding ranks, may be displayed to a user for selection. The recommended fabrics may be determined based on combinations of fabrics that provide performance metrics for various façades of the building. Using the ranking system provided by the fabric selection tool, the user may obtain a fabric sample and/or order one or more of the recommended fabrics.
Abstract:
A motorized window treatment provides a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment includes a covering material, a drive shaft, at least one lift cord rotatably received around the drive shaft and connected to the covering material, and a motor coupled to the drive shaft for raising and lowering the covering material. The window treatment also includes a spring assist unit for assisting the motor by providing a torque that equals the torque provided by the weight on the cords that lift the covering material at a position midway between fully-open and fully-closed positions, which helps to minimize motor usage and conserve battery life if a battery is used to power the motorized window treatment. The window treatment may comprise a photosensor for measuring the amount of daylight outside the window and temperature sensors for measuring the temperatures inside and outside of the window. The position of the covering material may be automatically controlled in response to the photosensor and the temperature sensors to save energy, or may also be controlled in response to an infrared or radio-frequency remote control.
Abstract:
A battery-powered motorized window treatment for covering at least a portion of a window may be adjusted into a service position to allow for access to at least one battery that is powering the motorized window treatment. A headrail of the motorized window treatment may be adjusted to the service position to allow for easy replacement of the batteries without unmounting the headrail and without requiring tools. The motorized window treatment may comprise brackets having buttons that may be actuated to release the headrail from a locked position, such that the head rail may be rotated into the service position. The headrail easily rotates through a controlled movement into the service position, such that a user only needs one free hand available to move the motorized window treatment into the service position and change the batteries.
Abstract:
A battery-powered motorized window treatment for covering at least a portion of a window may be adjusted into a service position to allow for access to at least one battery that is powering the motorized window treatment. A headrail of the motorized window treatment may be adjusted to the service position to allow for easy replacement of the batteries without unmounting the headrail and without requiring tools. The motorized window treatment may comprise brackets having buttons that may be actuated to release the headrail from a locked position, such that the head rail may be rotated into the service position. The headrail easily rotates through a controlled movement into the service position, such that a user only needs one free hand available to move the motorized window treatment into the service position and change the batteries.