Abstract:
Certain aspects of the present disclosure relate to a method for efficient measurement and handover of a mobile terminal with multiple USIMs. According to one aspect, a source Node B may initiate calls with first and second subscriber identities associated with a UE that supports multiple subscriber identities and transmit a request for a measurement report to the UE, the request specifying the first subscriber identity. The subscriber identities may be associated with a UE by association with an International Mobile Equipment Identity (IMEI). The source Node B may determine to handover the calls for the first and second subscriber identities to a target Node B based on the measurement report. The source Node B may transmit handover commands to instruct the UE to handover calls for the first and second subscriber identities to the target Node B.
Abstract:
Wireless communication in a multicarrier radio access network, such as a (TD-SCDMA) network, may be implemented where a user equipment (UE) maintains communication over various carrier frequencies in the multicarrier network. The UE will receive a downlink pilot channel transmitted on every subframe on a primary carrier frequency. The UE will also receive a downlink pilot channel transmitted on less than every subframe on a secondary carrier frequency The downlink pilot channel is sent in subframes on the secondary carrier frequencies using a particular period and offset to reduce or minimize interference.
Abstract:
Post-hard handover processing in a Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network may be improved to allow operation of High Speed Packet Access (HSPA) in hard handover. For example, uplink synchronization may be completed concurrent with HSPA to quickly resume HSPA operation in hard handovers. User Equipment (UE) may receive downlink data while completing uplink synchronization. In another example, a unique SYNC_UL code may be assigned to a UE for hard handover. The unique SYNC_UL code allows Node Bs of the TD-SCDMA network to know which UE is performing hard handover. When a Node B is receiving the unique SYNC_UL, the Node B may begin to allocate UL data grants. After receiving UL data from the UE, the Node B may resume High Speed Downlink Packet Access (HSDPA).
Abstract:
Transmission of certain channels between a User Equipment (UE) and a Node B (NB) in High Speed Packet Access (HSPA) of a Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network may be scheduled during a UE's idle intervals. Scheduled transmissions during a UE's idle interval result in lost system resources because the transmissions do not occur. A NB may prevent conflicts between scheduled transmissions and a UE's idle period by prohibiting transfer of certain channels a predetermined number of radio frames before the UE's idle period. Alternatively, the NB may schedule transmission of certain channels with a predetermined delay to prevent the channels from being scheduled during the UE's idle period.
Abstract:
Open loop power control in Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) multi-carrier systems is facilitated through the determination of a value for open loop control on a primary carrier frequency which is then used to perform open loop control on at least one secondary carrier frequency in the multi-carrier system. This determined open loop control value may be applied using the value determined on the primary carrier frequency, or may be further adjusted using an estimated difference between received power of the primary carrier frequency and the secondary carrier frequencies, in selected aspects. When the pilot signals in the secondary carrier frequencies are transmitted at different power levels, this open loop control value may be further adjusted with a transmit power level offset.
Abstract:
Certain aspects of the present disclosure propose techniques and apparatus for improving idle mode power consumption of a mobile station with multiple Universal Subscriber Identity Modules (USIMs).
Abstract:
Certain embodiments of the present disclosure provide an adaptive technique to determine size of a ranging back-off window according to a load of ranging channel. By applying an adaptive increase of the back-off window size, a probability of collision between ranging codes within a same transmission opportunity can be alleviated, and the ranging channel load can be decreased more efficiently than in the case of a standard non-adaptive back-off procedure.
Abstract:
A communication network node, such as a radio base station or base station controller in a wireless communication network, is configured to monitor and control ingress and egress data congestion. As such, node-based congestion monitoring provides a method of flow control between network nodes and, as such, for example, it may be used to control congestion on backhaul links between radio base stations and base station controllers, and on sidehaul links between base station controllers. In one embodiment, the node monitors egress and ingress data congestion conditions, and marks ingress data incoming to the node to indicate congestion. For example, if ingress data markings indicate ingress data congestion, the node can send signaling to initiate a reduction in the amount of data being sent to the node, e.g., a reduction in ingress data rates. If ingress data markings indicate egress data congestion, the node can reduce egress data rates.
Abstract:
Certain embodiments of the present disclosure provide techniques for a multi-mode mobile station to establish paging intervals in different radio access technology (RAT) networks in an effort to avoid consecutive collisions between paging intervals of a first and a second network.
Abstract:
Certain embodiments of the present disclosure provide techniques for a multi-mode mobile station to establish paging intervals in different radio access technology (RAT) networks that do not collide.