Abstract:
An optical device includes a plurality of first Si waveguides that split and output an optical signal received from an input unit, plurality of LN waveguides that are included in a LN modulator and that transmit the optical signals that are split and output by the first Si waveguides, and a plurality of second Si waveguides that multiplex and output the associated optical signals that are output from the plurality of respective LN waveguides. The device includes an output unit that outputs the optical signal multiplexed by the second Si waveguides, and a plurality of Mach-Zehnder interferometers disposed on each of waveguides connected by the first Si waveguides, the LN waveguides, and the second Si waveguides, respectively. When there are differences among waveguide lengths of the LN waveguides, the device is configured such that the optical path lengths of the waveguides for the respective Mach-Zehnder interferometers are equalized.
Abstract:
An optical transmission device includes a substrate, a waveguide, a signal wire, a ground wire, and a first stub wire. The waveguide is provided on the substrate and transmits an optical signal. The signal wire and the ground wire are disposed on the substrate along the waveguide and include, at end portions, bonding portions electrically connected to an external substrate by wires. The first stub wires are connected to the end portions of the ground wires. The distance between the signal wire and the first stub wire is shorter than the distance between the signal wire and the ground wire.
Abstract:
An optical modulator has an optical input port and an optical output port provided on a same end of a substrate; an optical waveguide pair formed in the substrate and configured to form a Mach-Zehnder interferometer, one end of the optical waveguide pair being connected to the optical input port and the other end of the optical waveguide pair being connected to the optical output port, the optical waveguide pair having a bending part; a groove provided along the optical waveguide pair in the bending part; and a signal electrode that applies a high-frequency electrical signal to the optical waveguide pair, wherein the signal electrode has an expanded section having an increased cross sectional area at a section intersecting the groove.
Abstract:
An optical transmission device has a modulator, a first terminal groove, and relay groove. The modulator has a groove on a waveguide formed on a substrate. EO polymer is placed in the groove in the modulator. The modulator modulates light propagated through the waveguide by changing the phase of the light propagated through the waveguide through change of the refractive index of the EO polymer placed in the groove in the modulator by means of an electric signal. The first terminal groove is formed on the substrate and has a width larger than a width of the groove in the modulator. The relay groove is formed on the substrate and communicates with the groove in the modulator and the first terminal groove. Furthermore, the EO polymer is placed in the relay groove and the first terminal groove.
Abstract:
The invention relates to a tunable laser source, and the reduction in the loss and the size can both be achieved in a tunable laser source having a power monitor and a wavelength locker function. A tunable laser is formed of a semiconductor optical amplifier and a resonator, and one of the two output light beams split from part of the light within the tunable laser by a 2×2 type optical splitter is incident into a light intensity monitor, and the other is incident into a wavelength locker.
Abstract:
An optical waveguide includes: a plurality of linear portions arranged in parallel to each other; a plurality of arcuate portions, in the folded portion of the optical waveguide, concentrically arranged about a predetermined center position as a center on the substrate at intervals narrower than intervals between the plurality of linear portions, each of the arcuate portions having a central angle that increases as each of the arcuate portions is closer to the center position; and a plurality of connecting portions respectively connecting the plurality of linear portions and the plurality of arcuate portions, at least one group of the connecting portions bending in a direction opposite to a direction where each of the arcuate portions bends.
Abstract:
An optical module includes a substrate and terminals. The substrate has: a first planar part having first through holes into which the terminals are inserted respectively; a second planar part that opposes the first planar part as a result of the substrate being folded and has second through holes into which the terminals are inserted respectively; at least one first land part that is formed on the first planar part around at least one of the first through holes and that is connected to at least one of the terminals inserted through the first through hole; and at least one second land part that is formed on the second planar part around at least one of the second through holes into which another one of the terminals not being connected to the first land part is inserted and that is connected to the terminal inserted through the second through hole.
Abstract:
The invention relates to a tunable laser source, and the reduction in the loss and the size can both be achieved in a tunable laser source having a power monitor and a wavelength locker function. A tunable laser is formed of a semiconductor optical amplifier and a resonator, and one of the two output light beams split from part of the light within the tunable laser by a 2×2 type optical splitter is incident into a light intensity monitor, and the other is incident into a wavelength locker.
Abstract:
An optical modulator includes a first coupler that branches an input light into two and outputs a first output light and a second output light; a first Mach-Zehnder interferometer (MZI) that modulates the intensity of the first output light from the first coupler and outputs a third output light; a second MZI that modulates the intensity of the second output light from the first coupler and outputs a fourth output light; a second coupler that combines the third output light from the first MZI and the fourth output light from the second MZI, branches a combined light into two, and outputs a fifth output light and a sixth output light. The interaction length of a branch of the first coupler and that of the second coupler are set such that the wavelength dependence of the splitting ratio of the first coupler is inversely related to that of the second coupler.
Abstract:
An optical module includes: a substrate; a wiring pattern; and a cover material. The wiring pattern includes, on the substrate, an electrode portion having a predetermined width and a signal line having a width smaller than the predetermined width and connected to the electrode portion. The cover material covers a part of the electrode portion and the signal line.