Abstract:
A self-powered switching device is provided. In embodiments, the device uses a prestressed flextensional electroactive member to generate a signal for activation of a latching relay. The electroactive member has a piezoelectric element with a convex face and a concave face that may be compressed to generate an electrical pulse. The flextensional electroactive member and associated signal generation circuitry can be hardwired directly to the latching relay or may be coupled to a transmitter for sending an RF signal to a receiver which actuates the latching relay.
Abstract:
A system and method are provided for forming body structures including energy filters/shutter components, including energy/light directing/scattering layers that are actively electrically switchable. The filters or components are operable between at least a first mode in which the layers, and thus the presentation of the shutter components, appear substantially transparent when viewed from an energy/light incident side, and a second mode in which the layers, and thus the presentation of the energy filters or shutter components, appear opaque to the incident energy impinging on the energy incident side. The differing modes are selectable by electrically energizing, differentially energizing and/or de-energizing electric fields in a vicinity of the energy scattering layers, including electric fields generated between a pair of transparent electrodes sandwiching an energy scattering layer. Refractive indices of transparent particles, and the transparent matrices in which the particles are fixed, are tunable according to the applied electric fields.
Abstract:
A system and method are provided for forming one-way light transmissive layers implementing optical light scattering techniques in those layers, and to objects, object portions, lenses, filters, screens and the like that are formed of, or that otherwise incorporate, such one-way light transmissive layers. Processes are provided by which to form, or otherwise incorporate, one or more one-way light transmissive, or substantially transparent, object portions or layers in solid or hollow objects Individual one-way light transmissive layers are formed of substantially-transparent sub-micrometer spheres, including micro-particles and/or nano-particles, with nano-voids incorporated between them. Refractive indices of the sub-micrometer particles are tunable in order that the finished layers provide an opaque appearance when viewed from a light incident side that is rendered according to an individual user's desires, but that are substantially-transparent to light passing through the finished layers to areas or sensors behind those finished layers.
Abstract:
A system and method are provided for forming electromagnetic energy transmissive layers, which are particularly configured to selectively scatter specific and selectable wavelengths of electromagnetic energy, while allowing remaining wavelengths to pass therethrough. Processes are provided by which to form, or otherwise incorporate, one or more energy scattering layers, including uniquely implementing optical light scattering techniques in such energy scattering layers, and to objects, object portions, wall plates, lenses, filters, screens and the like that are formed of, or that otherwise incorporate, such transmissive energy-scattering layers. Refractive indices of particles fixed in a matrix are tunable in order that the finished layers provide an opaque appearance when viewed from an energy-incident excited by light in the visible spectrum. A color, pattern, texture or image of the scattering layer may be rendered according to an individual user's desires, the layers being substantially-transparent to light passing through layers.