Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination physical computing device. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination physical computing device is determined based at least in part on the configuration of the source physical computing device. The destination physical computing device is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Abstract:
Systems and methods are provided which perform a file level restore by utilizing existing operating system components (e.g., file system drivers) that are natively installed on the target computing device. These components can be used to mount and/or interpret a secondary copy of the file system. For instance, the system can instantiate an interface object (e.g., a device node such as a pseudo device, device file or special file) on the target client which includes file system metadata corresponding to the backed up version of the file system. The interface provides a mechanism for the operating system to mount the secondary copy and perform file level access on the secondary copy, e.g., to restore one or more selected files.
Abstract:
An illustrative file indexing approach enhances what was previously possible with hypervisor-free live browsing of virtual machine (VM) block-level backup copies. Capabilities are described for indexing files discovered in VM block-level backup copies, including file content. The illustrative file indexing functionality activates a live-browse session to discover files present within VM block-level backup copies and indexes file names and directory structures as created by an original source VM, resulting in an illustrative file index. The illustrative file indexing functionality optionally indexes file contents within VM block-level backup copies, resulting in an illustrative content index. The file index and content index are retained in persistent data structure(s) stored apart from the VM block-level backup copies. The indexes are searchable without mounting or live-browsing the VM block-level backup copies. In some embodiments the file index and the content index are consolidated. An enhanced storage manager is also disclosed.
Abstract:
A streamlined approach analyzes block-level backups of VM virtual disks and creates both coarse and fine indexes of backed up VM data files in the block-level backups. The indexes (collectively the “content index”) enable granular searching by filename, by file attributes (metadata), and/or by file contents, and further enable granular live browsing of backed up VM files. Thus, by using the illustrative data storage management system, ordinary block-level backups of virtual disks are “opened to view” through indexing. Any block-level copies can be indexed according to the illustrative embodiments, including file system block-level copies. The indexing occurs offline in an illustrative data storage management system, after VM virtual disks are backed up into block-level backup copies, and therefore the indexing does not cut into the source VM's performance. The disclosed approach is widely applicable to VMs executing in cloud computing environments and/or in non-cloud data centers. The illustrative content indexing is accomplished without restoring the VM data files being indexed to a staging location.
Abstract:
A “backup services container” comprises “backup toolkits,” which include scripts for accessing containerized applications plus enabling utilities/environments for executing the scripts. The backup services container is added to Kubernetes pods comprising containerized applications without changing other pod containers. For maximum value and advantage, the backup services container is “over-equipped” with toolkits. The backup services container selects and applies a suitable backup toolkit to a containerized application to ready it for a pending backup. Interoperability with a proprietary data storage management system provides features that are not possible with third-party backup systems. Some embodiments include one or more components of the proprietary data storage management within the illustrative backup services container. Some embodiments include one or more components of the proprietary data storage management system in a backup services pod configured in a Kubernetes node. All configurations and embodiments are suitable for cloud and/or non-cloud computing environments.
Abstract:
During a data protection operation, a data storage system can collect computing attributes associated with hosting of an application generating data being backed up and may also obtain information relating to physical characteristics of the computing device hosting the application and the data. At the time of migration to a cloud, the system can use the collected attributes and/or information to provision cloud resources. For instance, the cloud storage system may accept provisioning requests, and may provide several templates which each specify a cloud resource that can be provisioned upon request, such as a cloud computing resource. The system can compare the collected attributes with the attributes of the available templates to determine the best match. Then, the system can issue a provisioning request to the cloud provider according to the best-matched template. After provisioning the resources, the system can restore backup data of the application to the cloud storage system to migrate the data.
Abstract:
Data protection resources are automatically scaled to the needs of data source(s) in an application orchestrator computing environment, such as a cluster in a Kubernetes deployment. The approach is adaptable to data sources in production clusters or application suites that are not application orchestrator deployments, such as a cloud-based database-as-a-service (DBaaS). A data storage management system protects cluster-based data with an elastic number of data protection resources (e.g., data agents, media agents), which are deployed on demand. The number of data protection resources deployed for a particular job are appropriate to the workload(s) at present and depend on a variety of scaling factors. In some embodiments, data protection resources are deployed within the same cluster as the data sources. In other embodiments, a separate infrastructure cluster provides the data protection resources on demand, and connects to any number and types of data sources, whether cloud-based or otherwise, without limitation.
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination physical computing device. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination physical computing device is determined based at least in part on the configuration of the source physical computing device. The destination physical computing device is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Abstract:
A method and system for communicating with IoT devices to gather information related to device failure or error(s) is disclosed. The system makes a copy of at least a portion of the device's non-volatile memory and/or receives IoT device data (e.g., sensor data and/or log files etc.) from an IoT device that recently failed. The system determines which log files and/or sensor data, for example, the IoT device created before and/or after a failure. After gathering this information, the system stores the information in a database, sends it to the IoT device manufacturer, for further analysis and diagnostics to troubleshoot the failure and send a fix or software update to the IoT device.
Abstract:
Certain embodiments described herein relate to an improved block-level replication system. One or more components in an information management system may receive a request to perform a block-level replication between a source storage device and a destination storage device, and depending on the specific replication mode requested, (i) store block-level changes directly to the destination storage device or (ii) first to a recovery point store and then later to the destination storage device.