Abstract:
Some embodiments of the invention provide a content-distribution system for distributing content under a variety of different basis. For instance, in some embodiments, the content-distribution system distributes device-restricted content and device-unrestricted content. Device-restricted content is content that can only be played on devices that the system associates with the particular user. Device-unrestricted content is content that can be played on any device without any restrictions. However, for at least one operation or service other than playback, device-unrestricted content has to be authenticated before this operation or service can be performed on the content. In some embodiments, the system facilitates this authentication by specifying a verification parameter for a piece of device-unrestricted content. The content-distribution system of some embodiments has a set of servers that supply (1) media storage structures that store content, (2) cryptographic keys that are needed to decrypt device-restricted content, and (3) verification parameters that are needed to verify device-unrestricted content. In some embodiments, the device that receives the media storage structure inserts the received cryptographic key or verification parameter in the received media storage structure. In some embodiments, the set of servers also supply cryptographic content keys for the device-unrestricted content. These keys are used to decrypt the content upon arrival, upon first playback, or at some other time. However, some embodiments do not store these cryptographic keys in the media storage structures for the device-unrestricted content.
Abstract:
This application relates to embodiments for providing a content stream to a device from a content server based on a protocol that is established between the device and an account server. The account server can initiate a session with the device and provide the device with a list of channels available for a user account associated with the device. When a channel is selected at the device, conditional access information can be provided from the account server to the device, which can thereafter relay the conditional access information to the content server. The content server can use the conditional access information to verify that the device has the appropriate permission to receive streaming content. In this way, because the conditional access information originates at the account server, permission to access streaming content can be managed by correspondence between the account server and the device, rather than the content server.
Abstract:
The disclosed hash and message padding functions are based on the permutation composition problem. To compute a hash of a message using permutation composition based hashing, the message is split into equal size blocks. For each block, a permutation composition value is computed. The block permutation composition values are then combined through composition to generate an overall permutation composition value. The hash of the message is then based on the overall permutation composition value. To pad a message using permutation composition based padding, the message is split into equal size blocks. For each block, a permutation composition value is computed and the permutation composition value is added to the block. The padded blocks are then recombined to generate the padded message.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
Some embodiments provide a method for performing an iterative block cipher. Line rotations and column rotations are combined to have a diversity of representations of the AES state. These protections can be performed either in static mode where the rotations are directly included in the code and the tables or in dynamic mode where the rotations are chosen randomly at execution time, depending on some entropic context variables. The two modes can also be advantageously combined together.
Abstract:
The disclosed hash and message padding functions are based on the permutation composition problem. To compute a hash of a message using permutation composition based hashing, the message is split into equal size blocks. For each block, a permutation composition value is computed. The block permutation composition values are then combined through composition to generate an overall permutation composition value. The hash of the message is then based on the overall permutation composition value. To pad a message using permutation composition based padding, the message is split into equal size blocks. For each block, a permutation composition value is computed and the permutation composition value is added to the block. The padded blocks are then recombined to generate the padded message.
Abstract:
Some embodiments provide a method for performing a block cryptographic operation that includes a plurality of rounds. The method receives a message that includes several blocks. The method selects a set of the blocks. The set has a particular number of blocks. The method applies a cryptographic operation to the selected set of blocks. A particular round of the cryptographic operation for a first block in the set is performed after a later round than the particular round for a second block in the set, while a different particular round for the first block is performed before an earlier round than the different particular round for the second block. In some embodiments, at least two rounds for the first block are performed one after the other without any intervening rounds for any other blocks in the set.
Abstract:
Various embodiments of a computer-implemented method of information security using block cipher column rotations are described. The cipher state column rotations provide resistance to white box side channel memory correlation attacks designed to reverse-engineer a symmetric cipher key associated with the information security system. The column rotation operations can be performed on the cipher state of a block cipher, and then removed from the result, to provide obfuscation of the data when in memory, while not impacting the resulting output of the cipher or decipher operation. The method additionally includes performing a first rotation of an iteration specific cipher subkey according to the first rotation index, performing an iteration of the block cipher operations on the cipher state matrix, and rotating the columns of the cipher state matrix according to an inverse of the first rotation index.
Abstract:
An authentication challenge system for performing secondary authentication for an account associated with an online store is described. In one embodiment, the authentication challenge system includes a question generation engine, which can derive a series of questions based upon activity associated with a user account of an online store; a network interface, which can transport the series of one or more questions derived by the question generation engine to authenticate the user to the online store; a confidence engine, which can determine a required confidence level for a successful authentication, and can compute a confidence score of the user identity; and a quality engine, which can adjust the question generation engine and the confidence engine based upon an analysis of question and answer metrics across multiple accounts of the online store. The online store can include digital media, such as music, movies, books or applications for electronic computing devices.
Abstract:
Some embodiments of the invention provide a method of verifying the integrity of digital content. At a source of the digital content, the method generates a signature for the digital content by applying a hashing function to a particular portion of the digital content, where the particular portion is less than the entire digital content. The method supplies the signature and the digital content to a device. At the device, the method applies the hashing function to the particular portion of the digital content in order to verify the supplied signature, and thereby verifies the integrity of the supplied digital content.