Abstract:
A system for increasing awareness of a driver to traffic-signs on the road is provided herein. The system includes: a sensor attached to a vehicle and configured to determine a type of one or more traffic-signs that are present in a scene containing the vehicle, wherein at least some of the traffic-signs are time-variant traffic-signs which present time-variant visual indicators; and a controller configured to: monitor and analyze, in real time: relative metrics indicative of one or more spatial relations between the vehicle and the one or more detected traffic-signs; and temporal data associated with the time-variant visual indicators of the time-variant traffic-signs; apply one or more decision functions to at least two of: the detected one or more traffic-signs and to the monitored relative metrics, and the temporal data associated with the time-variant visual indicators, so as invoke an action selected from a predefined set of actions.
Abstract:
A method of controlling a traffic light having at least two distinguishable light signals is provided herein. The method may include the following steps: obtaining a lighting pattern that determines an order of turning “on” and turning “off” said light signals over time; and illuminating the light signals based on the lighting pattern, such that over at least one period of time, a first light of the at least two distinguishable light signals is visible from a first distance range from the traffic light and a second light of the at least two distinguishable light signals is visible from a second distance range from the traffic light, wherein the first and the second distance ranges are non-overlapping.
Abstract:
A system for providing an improved image of daytime and nighttime scene for a viewer within a vehicle is provided herein. The system includes: a pixel array sensor having a fully masked gate-off capability at a single pixel level, wherein the pixel array sensor is provided with an inherent anti-blooming capability at the single pixel level; wherein each pixel is gated by a corresponding transfer gate transistor having high transfer gate efficiency. The system further includes a gating unit configured to control the transfer gate transistors with pulsed or continuous wave modulated active and passive light sources, to yield a synchronized sensing signal from the sensor, wherein a single pulse is sufficient to cover the entire field of view of the sensor and the entire depth of field of the illuminated scene; and a processing unit configured to receive the synchronized sensing signal and process it.
Abstract:
A system for providing an improved image of daytime and nighttime scene for a viewer within a vehicle is provided herein. The system includes: a pixel array sensor having a fully masked gate-off capability at a single pixel level, wherein the pixel array sensor is provided with an inherent anti-blooming capability at the single pixel level; wherein each pixel is gated by a corresponding transfer gate transistor having high transfer gate efficiency. The system further includes a gating unit configured to control the transfer gate transistors with pulsed or continuous wave modulated active and passive light sources, to yield a synchronized sensing signal from the sensor, wherein a single pulse is sufficient to cover the entire field of view of the sensor and the entire depth of field of the illuminated scene; and a processing unit configured to receive the synchronized sensing signal and process it.