Abstract:
Uplink waveforms for operating long term evolution (LTE) in an unlicensed band (i.e., long term evolution-unlicensed (LTE-U) communication) are disclosed. Carrier aggregation (CA) and standalone (SA) are disclosed. LTE on the licensed channel may provide both control and data, LTE on the unlicensed channel may provide data. Managing variable transmission time interval (TTI) continuous transmission is disclosed for transmission over multiple subframes of an unlicensed carrier in LTE-U. Listen-before-talk (LBT) requirements of unlicensed carriers provide for additional channel occupancy constraints when scheduling resources for multiple UEs for variable TTI continuous uplink transmissions over multiple subframes. A joint control channel is disclosed that provides control information for all of the potentially available subframes to be scheduled for the uplink transmissions. In addition to management of the variable TTI continuous transmissions, adjustments to uplink signal parameters are also disclosed that address the constraints due to the LBT requirements of unlicensed carriers.
Abstract:
Techniques are described for wireless communication. One method includes transmitting a sequence of deterministic variations of random access data on at least one interlace of non-contiguous frequency resources allocated to a physical random access channel (PRACH) in an unlicensed spectrum, beginning at a first time; repeating the transmitting of the sequence of deterministic variations of random access data at least once, beginning at a second time; generating at least one modification of the sequence of deterministic variations of random access data, in which the at least one modification is generated according to a modification sequence; and transmitting on the at least one interlace, beginning at a third time, the at least one modification of the sequence of deterministic variations of random access data.
Abstract:
Techniques are described for wireless communication. One method for wireless communication at a user equipment (UE) includes receiving, over the air, information indicative of at least one type of LBT procedure to perform for an uplink transmission; identifying, from the received information, the at least one type of LBT procedure to perform for the uplink transmission; and performing, for a shared spectrum, the at least one type of LBT procedure for the uplink transmission. One method for wireless communication at a network access device includes scheduling an uplink transmission of a UE in a shared spectrum, and transmitting, over the air, information indicative of at least one type of LBT procedure to perform for the uplink transmission.
Abstract:
Uplink waveforms for operating long term evolution (LTE) in an unlicensed band (i.e., long term evolution-unlicensed (LTE-U) communication) are disclosed. Carrier aggregation (CA) and standalone (SA) are disclosed. LTE on the licensed channel may provide both control and data, LTE on the unlicensed channel may provide data. Managing variable transmission time interval (TTI) continuous transmission is disclosed for transmission over multiple subframes of an unlicensed carrier in LTE-U. Listen-before-talk (LBT) requirements of unlicensed carriers provide for additional channel occupancy constraints when scheduling resources for multiple UEs for variable TTI continuous uplink transmissions over multiple subframes. A joint control channel is disclosed that provides control information for all of the potentially available subframes to be scheduled for the uplink transmissions. In addition to management of the variable TTI continuous transmissions, adjustments to uplink signal parameters are also disclosed that address the constraints due to the LBT requirements of unlicensed carriers.
Abstract:
Techniques are described for contention-based wireless communications channel access that may improve the likelihood that a contention procedure will pass and allow a device to transmit an uplink or downlink transmission using the contention-based channel. Various disclosed techniques may determine a transmit power for a subsequent transmission based on channel characteristics during one or more clear channel assessment (CCA) time durations. The transmit power may be selected to provide a CCA threshold that may increase the likelihood that a device will win contention for the channel during the CCA procedure.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) operating in unlicensed spectrum may determine that a base station is not transmitting during a particular time period (e.g., by detecting the absence of a control signal). The UE may then perform a listen-before-talk (LBT) procedure and, if the channel is available, may perform an autonomous uplink (UL) transmission. The autonomous UL transmission may include control information to facilitate decoding. Thus, the base station may receive the control information, and decode the rest of the autonomous UL transmission accordingly. The base station may configure the UE for autonomous UL transmissions when the radio link is established, and may also send dynamic configuration information to initiate, suspend, or reconfigure parameters for autonomous UL transmissions.
Abstract:
Methods, systems, and devices are described for wireless communications. In one method, a clear channel assessment (CCA) may be performed at a base station to determine availability of an unlicensed spectrum. A first waveform may be transmitted to a set of user equipments (UEs) over the unlicensed spectrum when available. The first waveform may indicate a first time period and a second time period during which the base station has channel access over the unlicensed spectrum. A second waveform may be received from one or more UEs responsive to the first waveform. Each second waveform may be received over the unlicensed spectrum during the first time period and may indicate that the respective UE has channel access over the unlicensed spectrum to receive data from the base station during the second time period.
Abstract:
Mitigation of inter-base station resynchronization loss in wireless networks including contention-based shared frequency spectrum is discussed. Aspects of such mitigation provide for base stations entering into an idle mode when a transmission opportunity occurs in a radio frame of the next resynchronization occasion. Additional aspects provide for the base station to signal a flexible listen before talk (LBT) frame length to the user equipment (UE), either with or without explicit signaling of the downlink-uplink division. Further aspects provide for the base station to signal a reset indication to UEs that will prompt the UEs to monitor for downlink channel reserving signals prior to the current LBT frame ending by the resynchronization occasion.
Abstract:
Techniques are described for wireless communication. A first method includes winning, at a UE, contention for access to a channel of a shared radio frequency spectrum band; identifying a number of frequency resources of the band that are allocated to the UE for at least one uplink transmission following the winning contention for access; and transmitting a channel reservation signal using a set of frequency resources associated with the identified number of frequency resources. A second method includes winning, at a UE, contention for access to a channel of a shared radio frequency spectrum band; identifying a number of frequency resources of the band that are pre-designated by a base station for transmission of a channel reservation signal; and transmitting the channel reservation signal, after the winning contention for access, using a set of frequency resources associated with the identified number of pre-designated frequency resources.
Abstract:
Multi-channel channel state information (CSI) design is disclosed for long term evolution (LTE)/LTE-Advanced (LTE-A) systems with unlicensed spectrum. A “reference” CSI process defined for each channel/carrier. The reference CSI process is defined across each channel in any particular band that the transmitter is configured to support. The transmit power for such reference CSI processes is spread equally over each such channel. In order to report CSI for a subset of channels under an unequal power split assumption, a user equipment (UE) may apply a different power offset in the computation of the CSI process. Alternatively, an auxiliary CSI process may be defined for reporting CSI of a subset of channels with unequal distribution of powers across different channels in a band.