Abstract:
Systems, methods, and devices for concurrently allowing station-to-station transmissions and access point-to-station transmissions are described herein. In some aspects, a method comprises receiving, from a first device, a peer request to send message requesting a first time for transmissions with a second device. The method further comprises reserving the first time for transmissions between the first device and the second device. The method further comprises transmitting a coordination message to the first device and the second device. The coordination message may indicate that the first time is reserved for transmissions between the first device and the second device. The method further comprises transmitting a first data packet to a third device during a time other than the first time. The first device may transmit a second data packet to the second device during the first time.
Abstract:
An apparatus and method for managing interference in a transmission medium are disclosed. A apparatus and method may be used to detect a condition experienced by only one of first and second wireless nodes, and modify an operational parameter of one of the first and second wireless nodes, if the condition is detected, such that both the first and second wireless nodes experience the condition or neither the first and second wireless nodes experience the condition.
Abstract:
Various aspects relate generally to the generation and wireless transmission of a long training field (LTF) and a data field within a 320 MHz or 240 MHz bandwidth channel. The LTF includes an LTF sequence based on a concatenation of a plurality of LTF subsequences, each LTF subsequence being associated with a channel bandwidth less than the total bandwidth of the channel, each of the plurality of LTF subsequences being selectively phase-rotated to reduce a peak-to-average power ratio. Each of the plurality of LTF subsequences may be associated with an LTF designed for an 80 MHz bandwidth channel. The LTF and the data field may then be transmitted in a wireless packet to at least one second wireless communication device via the 320 MHz or 240 MHz bandwidth channel.
Abstract:
This disclosure provides methods, devices and systems for configuring tones for a distributed resource unit (RU) across a channel bandwidth to improve frequency diversity and available transmit power. A distributed RU may include a set of tones that may be allocated across a bandwidth that is greater than a bandwidth of the aggregate quantity of tones. The set of tones may include a set of data tones grouped into contiguous groups of one or more data tones and a set of non-contiguous pilot tones. The data tones may be mapped to useful tones over a center portion of a half-bandwidth of the channel. The pilot tones may be mapped near edge tones at edges of the channel bandwidth or near direct current tones at a center of the channel bandwidth. A system bandwidth may include one or more channel bandwidths associated with distributed RUs.
Abstract:
This disclosure provides methods, devices and systems for generating a secure long training field (LTF). In some implementations, the secure LTF may include a randomized bit sequence that is difficult, if not impossible, to replicate by any device other than the transmitting device and the intended receiving device. For example, the transmitting device may use a block cipher or stream cipher to generate a pseudorandom bit sequence and may select a subset of bits of the pseudorandom bit sequence to be mapped to a sequence of modulation symbols representing an LTF symbol of the secure LTF. More specifically, each of the modulation symbols is mapped to a respective one of a number of subcarriers spanning a bandwidth of the secure LTF. The transmitting device may further transmit a physical layer convergence protocol (PLCP) protocol data unit (PPDU) that includes the secure LTF to the receiving device.
Abstract:
This disclosure provides methods, devices and systems for soliciting trigger-based (TB) physical layer protocol convergence protocol (PLCP) protocol data units (PPDUs). Some implementations more specifically relate to trigger frame and PPDU designs that support RU downsizing. For example, an access point (AP) may transmit a trigger frame soliciting a TB PPDU from a wireless station (STA). In some aspects, the trigger frame may carry RU allocation information indicating the allocated RU or MRU (associated with a wireless medium) and downsizing information indicating whether downsizing of the RU or MRU is permitted. If interference is detected in a portion of the wireless medium, and downsizing is permitted, the STA may transmit the TB PPDU on a downsized RU or MRU. The downsized RU or MRU includes a subset of the tones in the RU or MRU allocated by the trigger frame.
Abstract:
Methods, systems, and devices for wireless communications are described. An access point (AP) may transmit, to a second AP and during a first portion of a transmission opportunity (TxOP), a request to participate in a multi-user (MU) transmission. The AP may receive, from the second AP and during the first portion of the TxOP, an indication of intent to participate in the MU transmission during the second portion of the TxOP, the indication of intent including a resource request of the second AP for participation in the MU transmission. The AP may transmit, during an initial period of the second portion of the TxOP, a trigger signal to the second AP indicating a set of one or more resources for the second AP during the MU transmission. The AP may participate, in conjunction with the second AP and during the second portion of the TxOP, in the MU transmission.
Abstract:
This disclosure provides methods, devices and systems for increasing carrier frequencies for wireless communications in wireless local area networks (WLANs). Some implementations more specifically relate to packet designs and numerologies that support wireless communications on carrier frequencies above 7 GHz. In some aspects, a wireless communication device may up-clock a physical layer (PHY) convergence protocol (PLCP) protocol data unit (PPDU) for transmission on carrier frequencies above 7 GHz, where the PPDU conforms to an existing PPDU format associated with carrier frequencies below 7 GHz. As used herein, the term “up-clocking” refers to increasing the frequency of a clock signal used to convert the PPDU between the frequency domain and the time domain. In some aspects, the up-clocking may result in a subcarrier spacing (SCS) greater than or equal to 1.2 MHz, where the SCS represents a spacing between the subcarriers on which a PHY preamble of the PPDU is modulated.
Abstract:
This disclosure provides methods, devices and systems for increasing the transmit power of wireless communication devices operating on power spectral density (PSD)-limited wireless channels. Some implementations more specifically relate to trigger frame and physical layer convergence protocol (PLCP) protocol data unit (PPDU) designs that support distributed transmission. In some implementations, an access point (AP) may transmit a trigger frame soliciting a trigger-based (TB) PPDU from a wireless station (STA), where the trigger frame carries RU allocation information indicating a number (N) of tones allocated for the STA and carries tone distribution information indicating whether the N tones are allocated for a contiguous transmission or a distributed transmission. In some other implementations, an AP or a STA may transmit a PPDU carrying distributed signaling information indicating whether the PPDU is transmitted as a contiguous transmission or a distributed transmission.
Abstract:
This disclosure provides methods, devices and systems for radio frequency (RF) sensing in wireless communication systems. In some implementations, a transmitter device transmits sounding sequences configured for channel estimation over a wireless channel to a receiver device. The transmitter device also transmits or receives non-sounding frames associated with a channel report of the receiver device. The transmitter device transmits a frame soliciting the channel report from the receiver device. The transmitter device receives the channel report, which may include channel state information (CSI) of the wireless channel responsive to at least the sounding sequences. Some types of channel reports may take longer to generate than other types of channel reports. Transmitting or receiving the non-sounding frames during the time period may prevent other devices from accessing the wireless channel when the receiver device needs additional time to generate a certain type of channel report.