Abstract:
The object of the invention is to provide a break-in detection system having excellent reliability and maintenance-free characteristics. The detection sensor 1 of FBG type detects an intruder trying to climb over the fence around premises. The detection sensor 2 of OTDR type detects an intruder trying to demolish the fence. A fiber optic cable used as a detection sensor has a sensor core wire and a LAN transmission core wire arranged in parallel to each other to form a LAN transmission channel. Said LAN transmission core wire is used to transmit videotaped image signals from ITV cameras 8 and image control signals two ways between the monitoring room 3 and the ITV control device 6. Said LAN transmission channel is available for connection by IP telephone sets 11, a LAN terminal 12, a wireless LAN terminal 14 and IP-BOX 15 for internet communication.
Abstract:
In an intrusion detection system, at least one optical cable is provided, through which light enters at one of its ends and exits at the other end, at which other end a device for detecting changes in the light intensity passing through the cable is also provided. The system is usually part of a fence, but it can be used in structures such as roofs, windows, etc. When an intruder exerts force on the optical cable, its movement actuates a mechanical device so that a member thereof exerts pressure at a certain place on the cable, deforming the optical cable and causing light attenuation which is detected and actuates an alarm. When used as part of a fence, such mechanical sensing devices are provided at certain intervals from each other. Optical cables can be provided at different heights of such a fence, with light intensity attenuation means as described above.
Abstract:
A microbend-sensitive optical fiber is embedded in a thin pliable padding and laid under an area to be protected. An amplitude-modulated optical light beam is launched into one end of the fiber. The light beam is recovered from the other end of the optical fiber. The angular phase shift between the launched light beam and the recovered light beam is continuously measured and sampled at desired sample intervals. A change in the measured phase shift between any two sequential sample intervals is indicative of the presence of an intruding entity. The magnitude of the phase shift is a function of the mass of the entity. The pattern of repetitive phase shift differences as a function of time provides an estimate of the dynamic characteristics of the intruding entity.
Abstract:
A Precinct Protection System includes a laser source of light which is applied at the input to a bundle of light transmissive fibers. The fibers are gathered in a cable in loops of varying lengths so that the fibers enter and exit the cable at one and the same end. The cable is placed along a line adjoining or surrounding the precincts to be protected. An intruder traversing the line or protected perimeter will disturb one or more of the fiber optic loops of the cable. The circumstance and locality of the disturbance produced by the intruder are indicated on an analog or digital display.
Abstract:
An optical fiber disposed between a light source and a photodetector is subjected at a number of points, equispaced along its axis, to a transverse pressure causing a significant attenuation of the transmitted luminous radiation. The optimum spacing of the pressure points is a function of the radius of the fiber core and of the refractive indices of its core and its envelope. These pressure points are formed by turns of a substantially incompressible helix which is wound around the fiber and which may be constituted by an internal or external rib of a surrounding flexible sheath of similarly incompressible material. The pressure may be applied by a piezoelectrical transducer and may be modulated by an electrical signal to be picked up by the photodetector.
Abstract:
A security system having a mesh-like intruder detection structure for use as or with a security fence 2 or for detecting intruders jumping down from a fence or wall. The structure is made up from a number of elongated members (4, 6, 8, 10, 12, 14) each in the form of or including a fibre-optic waveguide, the elongated members being secured together at a number of spaced jointing points (20) spaced 20 cms or less apart. Portions of the elongated members at the jointing points are held in a position fixed relative to one another by encapsulating the jointing points in a plastics material (40), welding the portions together and/or surrounding them with a metal ferrule (38).
Abstract:
Apparatus which comprises at least one length of flexible optic fibre, storage means for receiving the length of optic fibre, means for transmitting an optical signal along the length of optic fibre, and means for detecting an optical signal in the length of optic fibre. There is also provided a communication or security system which comprises at least one loop of flexible optic fibre, a reel on which the optic fibre is coilable, means for transmitting an optical signal along the loop of optic fibre, and means for detecting an optical signal in the length of optic fibre.
Abstract:
In a security system in which at least one fibre-optic wave guide, which is carried in a strand, extends along a boundary, light is directed into one end of the guide and the light leaving the guide is detected by an optical detector. An indication is given when the intensity of the detected light falls below a predetermined threshold, so as to warn when the wave guide is disturbed significantly or cut through.In order to manufacture the strand, a fibre-optic wave guide is positioned against an elongate carrier and secured to the latter by bonding agent and/or adhesive tape.A dummy strip, having identical external appearance to the strand but not including a fibre-optic wave guide, can also run along the boundary in question.
Abstract:
A monitoring system according to the present disclosure includes an optical fiber (10) laid in a monitoring area; an authenticating unit (20) configured to authenticate a person or a vehicle passing through a gate (G) for entering the monitoring area; an optical fiber sensing unit (31) configured to acquire, based on an optical signal received from the optical fiber (10), a parameter having a unique pattern corresponding to the pattern of action of the authenticated person or vehicle; and an analyzing unit (32) configured to identify the pattern of action of the authenticated person or vehicle based on the unique pattern of the parameter.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously extend DFOS techniques to anomaly detection using optical magnetism switches (OMC) that are integrated into the DFOS system.