Abstract:
An electrostatic image developing toner including a binder resin; and a colorant, and satisfying following conditions (1) and (2): 0.02≦CA/CB≦0.20 (1) 1≦Nt/St≦15 (2) wherein CA represents an amount of a carboxyl group and its salt on a surface of the toner, CB represents an amount of a carboxyl group and its salt in the entire toner, Nt represents an amount of a nitrogen element on the surface of the toner, and St represents an amount of a sulfur element on the surface of the toner.
Abstract:
To provide a positive charge control resin with which an electrophotographic functional component part coming into contact with a toner can be made chargeable in a polarity reverse to the polarity of the toner, and which has superior dispersibility in, and compatibility with, a main binder. The present invention is a positive charge control resin having a copolymer obtained by polymerizing specific acrylate or methacrylate monomer, amino-group-containing monomer(s) and carboxyl-group-containing monomer(s) as copolymerization components.
Abstract:
The present disclosure relates to a process for latex preparation comprising a first heating of a latomer mixture comprising at least one free radical polymerizable monomer to low conversion and then adding at least one alkylene anhydride; a second heating of the latomer mixture to low conversion; a third heating of the latomer mixture to form polymeric particles; and combining at least one amine with the polymeric particles.
Abstract:
An electrophotographic toner comprising a resin, a colorant and a release agent which comprises a first wax and a second wax, wherein: (i) the first wax exhibits: an endothermic peak appearing in the range 75-100° C., a peak width at half height of the endothermic peak of 10-40° C., an exothermic peak appearing in the range 70-100° C. and a peak width at half height of the exothermic peak of 10-40° C., in a DSC measurement; (ii) the second wax exhibits: an endothermic peak appearing in the range 60-90° C., a peak width at half height of the endothermic peak of 5° C. or less, an exothermic peak appearing in the range 55-80° C. and a peak width at half height of the exothermic peak of 5° C. or less, in the DSC measurement; (iii) a weight ratio of the first wax to the second wax is between 9:1 and 2:8; and (iv) the resin contains a polar group.
Abstract:
A binder resin composition which can sharply, but reversibly, melt and solidify within a narrow temperature range, a toner composition of enhanced low-temperature fixability and durability having the binder resin composition, and a preparation method thereof. The binder resin composition of the toner includes a first polymer compound having a proton donor site in a main chain, and a second polymer compound having a proton acceptor site in a main chain.
Abstract:
The present invention relates to a non-magnetic mono-component toner composition and a preparation method thereof. Disclosed is a non-magnetic mono-component toner composition prepared by coating a spherical organic fine particle having a weight-average molecular weight (Mw) of 250,000-1,600,000 and an average particle size of 50-500 nm, a hydrophobic silica, and a metal oxide fine particle on a toner mother particle. The non-magnetic mono-component toner composition of the present invention ensures smooth toner supply because of good fluidity, reduces PCR contamination and deterioration of image quality, enables uniform toner layer formation on the development roller, prevents blocking at the blade of the development roller, and solves the low temperature double image problemin the non-imaging region at a low temperature. Therefore, it can be useful for an image printing apparatus adopting the non-magnetic mono-component development system in which the developing roller contacts the photoreceptor.
Abstract:
Dry electrographic toner compositions are provided comprising a plurality of dry toner particles, wherein the toner particles comprise polymeric binder comprising at least one amphipathic copolymer comprising one or more S material portions and one or more D material portions. The dry electrographic toner composition comprises a wax associated with the dry toner particles that has been entrained in the toner particle during the formation of the amphipathic copolymer. Methods of making the electrographic toner compositions are also provided. These toner compositions provide images having excellent durability and erasure resistance properties at low fusion temperatures and with little undesired offset.
Abstract:
A method of preparing a toner, including: preparing a colorant dispersion by mixing a reactive emulsifier and a colorant; preparing a toner composition by mixing a macromonomer including a hydrophilic group, a hydrophobic group and at least one reactive functional group, at least one polymerizable monomer and a chain transfer agent with the colorant dispersion; emulsion polymerizing the toner composition in a medium; and separating and drying the polymerized toner, wherein the amounts of the macromonomer and the chain transfer agent are controlled to regulate the configuration of toner particles. A toner prepared using the method, an image forming method using the toner, and an image forming apparatus using the toner are also provided by the invention. According to the method, the size and configuration of toner particles are easily controlled. In addition, the method minimizes the use of a surfactant, and decreases polluted water and waste water, which is very advantageous environmentally.
Abstract:
The invention provides liquid electrographic toner compositions comprising a liquid carrier having toner particles dispersed in the liquid carrier. The liquid carrier has a Kauri-Butanol number less than about 30 mL. The toner particles comprise polymeric binder comprising at least one amphipathic copolymer comprising one or more S material portions and one or more D material portions. The S material portion comprises at least one soluble component and at least one insoluble component, wherein the insoluble component is the reaction product of monomers having an absolute difference in Hildebrand solubility parameter from the liquid carrier of about 3.0 MPa1/2 or greater. These toner particles can exhibit excellent final image durability characteristics, and can also provide toner compositions that provide excellent images at low fusion temperatures on a final image receptor.