Abstract:
A liquid crystal display module includes a backlight unit having a light exiting surface, a first polarizing layer disposed on the light exiting surface of the backlight unit, a liquid crystal cell disposed on one side of the first polarizing layer opposite to the backlight unit, a protective glass panel disposed on one side of the liquid crystal cell opposite to the first polarizing layer and cooperating with the liquid crystal cell to define a heat-dissipating space therebetween, and a second polarizing layer disposed on one side of the protective glass panel opposite to the liquid crystal cell.
Abstract:
An anti-Newton's ring backlight module and liquid crystal display using the same has a housing, a light guide plate, multiple optical films, an air passage and a adhesive layer. The housing has a top surface, where an internal cavity is formed, and a sidewall having an inner shoulder. The light guide plate is disposed in the internal cavity. The optical films are disposed on the light guide plate and are substantially smaller than the inner shoulder of the internal cavity to define an air passage between the optical films and the inner shoulder. The adhesive layer is bonded to the optical films and the inner shoulder and mainly has at least one through hole corresponding to the air passage and communicates with the air passage to allow air trapped between adjacent optical films to escape away. The release film simplifies the Liquid crystal panel module manufacturing process.
Abstract:
A liquid crystal display includes a backlight device which having a housing in which at least one tube-like fluorescent lamp is present. The housing forms a substantially dust-proof space. Part of the lamp extends outside the housing through a wall of the housing, which wall abuts against the lamp in a substantially dust-tight manner at the location where the lamp passes through the wall.
Abstract:
The invention provides a technique to effectively cool an electro-optical device in the electro-optical device encased in a mounting case. The mounting case can include a plate member arranged so as to face one surface of a liquid crystal panel and a cover member arranged so as to cover the plate and the liquid crystal panel. Cooling-air guiding portions that include at least some of the side surfaces of the liquid crystal panel as at least some of the surfaces that constitute the passage can be provided in the cover member.
Abstract:
A direct backlight module includes a reflective base, a buffer block, a lamp tube and a casing. Two opposite side regions of the reflective base both have two opposite openings located at two ends of each side region separately. The buffer block is disposed on the reflective base and positioned opposite to one of the openings. The lamp tube has two opposite electrodes at two ends of the lamp tube separately, and one of the electrodes is mounted in the buffer block. The casing covers the buffer block and there is an airflow channel formed by the combination of the inner chamber of the casing and the openings when the casing is installed in the reflective base.
Abstract:
The invention provides a cased electro-optical apparatus that can include an electro-optical unit that receives light in the image display area from a light source, a plate that opposes one side of the electro-optical unit, and a cover for covering the electro-optical unit. The cased electro-optical apparatus can have a case for containing the electro-optical unit by supporting at least a portion of the periphery of the image display area of the electro-optical unit by the plate and/or the cover. One of the plate and the cover is selected from a plurality of ones having different shapes and each of the plurality of ones is attachable to the other.
Abstract:
A mounting case for an electro-optical device is used in an electro-optical device on which a display image is displayed and accommodates an electro-optical panel having an image display region on which the display image is displayed. The mounting case includes a main body that has a plate member formed by a pressing process, a bottom portion opposite to the peripheral region located around the image display region in the electro-optical panel and side portions continuous with the bottom portion to surround the side edge of the electro-optical panel so that the electro-optical device is accommodated therein; and a heat-radiating blade in which a portion corresponding to the circumferential edge of the main body of the plate member is partially formed by a pressing process and that extends from the main body to the outside of the main body.
Abstract:
A lamp assembly includes at least one lamp for generating light, a reflecting layer, and a conductive supporting member. The reflective layer reflects a part of the light traveling in a first direction toward a second direction opposite to the first direction. The conductive supporting member includes a supporting sheet for supporting the reflecting layer and a plurality of penetrating holes formed in the supporting sheet. The penetrating holes reduce the overlapping area between the lamp and the supporting sheet. The reflective layer and the conductive supporting member are disposed on a rear side of the lamp.
Abstract:
An electro-optical device encased in a mounting case includes an electro-optical device in which projection light from a light source is incident on an image display region; and a mounting case including a plate disposed to face one surface of the electro-optical device and a cover to cover the electro-optical device, the cover having a first abutting portion of abutting against the plate, the mounting case accommodating the electro-optical device by holding at least a portion of a peripheral region located in the circumference of the image display region of the electro-optical device with at least one of the plate and the cover. Further, at least one of a heat transfer path reaching the cover from the electro-optical device through the plate and another heat transfer path reaching the cover from the electro-optical device not through the plate is formed, and the heat transfer path includes a portion in which the electro-optical device area contacts with the cover, directly or indirectly.
Abstract:
A liquid crystal display of a large screen size, a slim thickness and light weight is disclosed. The liquid crystal display includes a light supply unit group having at least two light guiding plates arranged in parallel and at least one lamp unit coupled to one side of the light guiding plate. A light control element is mounted on an upper surface of the light supply unit group, and uniformly controls luminance between the light guiding plate and the lamp unit. A reflective plate is disposed on a rear surface of the light supply unit group and has a shape corresponding to the rear surface of the light supply unit group. A back light assembly includes a receiving container that receives the light supply unit group, the light control element, and the reflective plate.