Abstract:
Carbon monoxide and carbonyl sulfide emissions are reduced in manufacturing processes, including titanium tetrachloride production processes. Gas is contacted with CO, COS, and an oxygen-containing gas with a suitable catalyst. The catalyst may be a metal oxide catalyst containing bismuth, cobalt and nickel, a xerogel or aerogel catalyst containing Au, Rh, Ru and Co in aluminum oxide/oxyhydroxide matrices, or a supported metal catalyst that contains at least one metal from the group Pd, Rh, Ru and Cu. In the latter case, the catalyst support is contains alumina or carbon. A catalyst composite of Au, Rh, Ru and Cr, and cerium oxide and lanthanum oxide may also be used.
Abstract:
Carbon monoxide and carbonyl sulfide emissions are reduced in manufacturing processes, including titanium tetrachloride production processes. Gas contaminated with CO and COS, and an oxygen-containing gas, is contacted with a suitable catalyst. The catalyst may be a metal oxide catalyst containing bismuth, cobalt and nickel, such as metal oxides containing oxides of the formula, (BiaCobNic)yMo1−yOz, where a, b and c are from 0 to 1, y is from 0.01 to 0.75 and z is from 1.125 to 4.875; a xerogel or aerogel catalyst containing Au, Rh, Ru and Co in aluminum oxide/oxyhydroxide matrices, such as those of the formula [(Au1−(w+d)RhwRud)eCofAlO1.5−u(OH)2u]1−(e+f), where w and d are from 0 to 1, e is from 0.001 to 0.2, f is from 0 to 0.2 and u is from 0 to 1.5; or a supported metal catalyst that contains at least one metal from the group Pd, Rh, Ru and Cu. In the latter case, the catalyst support contains alumina or carbon. A catalyst composite of Au, Rh, Ru and Cr, and cerium oxide and lanthanum oxide may also be used, such as a composites containing Au, Rh, Ru and Cr, and cerium oxide and lanthanum oxide of the formula (Au1−(w+d)RhwRud)eCrf(CegLa1−g)1−(e+f)Ov, where w and d are from 0 to 1, e is from 0.001 to 0.2, f is from 0 to 0.2, g is from 0 to 1 and v is from 1.1 to 2.4.
Abstract:
A process is provided for use in the conversion of alkanes into alkylene oxides, having particular utility in the conversion of propane to form propylene oxide, using a lanthanide-promoted, supported, silver catalyst prepared via precipitation. A preferred embodiment uses silver nitrate and lanthanum nitrate to form the catalyst on a BaCO3 support.
Abstract:
Processes for the catalytic conversion of hydrocarbons to carbon monoxide and hydrogen employing new chromium-based catalysts are disclosed. One highly active and selective catalyst system, providing greater than 95% CH4 conversion, and 97-98 % selectivity to CO and H2, is a chromium-containing catalyst consisting of a CoCr2O4 cubic spinel precursor dispersed in a chromium oxide matrix. Some other preferred catalysts compositions comprise nickel-chromium containing and rare earth-chromium containing compounds.
Abstract translation:公开了使用新的铬基催化剂将烃催化转化成一氧化碳和氢气的方法。 提供大于95%的CH 4转化率和97至98%对CO和H 2的选择性的一种高活性和选择性的催化剂体系是由分散在氧化铬基体中的CoCr 2 O 4立方尖晶石前体组成的含铬催化剂。 一些其它优选的催化剂组合物包含含镍铬和含稀土铬的化合物。