Abstract:
The present invention provides a vent assembly suitable for use with a respiratory mask of the type used in CPAP treatment. In one embodiment the vent is made of a thin air permeable membrane. Generally, the membrane is thinner than 0.5 mm. The membrane can be made of a hydrophobic material such as polytetrafluoroethylene (PTFE). The membrane can also be fabricated from expanded PTFE. The expanded PTFE membrane is mounted on a polypropylene scrim. The pores of the membrane have a reference pore size of 10 to 15 microns. In an alternative embodiment, the vent assembly includes a vent constructed from stainless steel. In another embodiment the membrane has a superficial cross-sectional area of approximately 500 mm2. In another embodiment the vent assembly comprises a membrane attached to a vent frame, the vent assembly forming an insert which can be removeably attached to a mask frame.
Abstract:
A patient interface system (30) that includes a patient interface assembly (40) and a headgear assembly (70). The patient interface assembly (40) includes a frame (42), a patient circuit connector (44), a seal member (46), and a coupling assembly (50) extending from the frame. The coupling assembly (50) is directed toward the users forehead when worn. The headgear assembly (70) includes an elongated pad support (72), a headgear attachment element (78) disposed on the pad support (72), a headgear strap (80) coupled to the headgear attachment element (78), and an elongated headgear pad (74) coupled to the pad support (72). The pad support, pad, or both are configured so as to extend from the forehead of the user generally along a centerline of the head and terminate proximate to a top of a head. In addition, a coupling assembly attachment assembly (100) is operatively coupled to the pad support (72) to couple the coupling assembly (50) of the patient interface device to the headgear assembly (70).
Abstract:
A nose cap includes a hollow body having a first opening, a second opening communicating with the first opening via a first passage and an outer covering having a third opening communicating with the first opening of the hollow body and a fourth opening communicating with the third opening via a second passage. An air chamber is formed between the hollow body and the outer covering after extension of the hollow body into the second passage. The air chamber is able to provide comfort to a patient.
Abstract:
A gas exhaust system for a mask apparatus for use in a breathing assistance system may include a housing for supporting a cushion configured to provide a seal against a patient's face, the housing defining a housing opening, and a ball member secured in the housing opening such that the ball member may rotate relative to the housing. One or more exhaust passageways for communicating exhaust gas away from the patient may be defined between an outer surface of the ball member and the housing opening.
Abstract:
A connector arrangement joining a respiratory mask and headgear is adapted for single-handed disengagement by the patient. A first, rigid connector part is formed into the rigid mask frame, with a mating second connector attached to a strap of the headgear. The connectors are held away from the patient's face by the connection to the mask frame.
Abstract:
A patient interface gas delivery mask having a rolling diaphragm that connects a seal member forming a cushion which contacts the patient's face with a mask shell or that connects a conduit coupling member with the mask shell. The rolling diaphragm of the present invention allows the cushion to self align to the patient's face and allows relative movement between the seal member and the mask shell. This prevents torque acting of a conduit coupled to the mask shell from being translated to the seal member, which might otherwise dislodge the seal member creating unwanted gas leakage at the seal member-patient interface.
Abstract:
A mask assembly for a user includes a frame having a main body and lateral connector portions and a cushion component provided to the frame and defining a breathing cavity configured to accommodate at least a portion of the user's nose in use. The cushion component includes a face contacting seal portion adapted to sealingly engage with at least a portion of the user's nose in use. The cushion component has an aperture to communicate pressurized gas from the breathing chamber to the user's airways in use, and a main wall portion, opposite from the aperture, extending upwardly away from the frame. The main wall portion includes a stiffening portion.
Abstract:
A washout vent formed of or treated with hydrophobic or hydrophilic material, or a vent coated with hydrophobic or hydrophilic material, reduces noise and/or minimizes or precludes the formation of blockage in the vent pathway due to outflow of gas from a respiratory mask. One or the other or combinations of hydrophobic and hydrophilic materials may be used to repel or wick moisture away to minimize or preclude moisture buildup on vent surfaces and/or clogging of vent pathways, particularly when using humidified air. Sintered porous plastic hydrophobic or hydrophilic materials are utilized and the porosity may be varied integrally within the vent membrane or by forming the vent from layers of materials having different porosities.
Abstract:
A forehead support for a facial mask is adapted to be moveable between a first position with respect to a frame of the mask and a second position with respect to the frame. The forehead support includes a biasing mechanism that urges the forehead support in the second position. A method of positioning a forehead support with respect to a frame of a patient interface includes positioning the forehead support and patient interface assembly on a face; disengaging a forehead support locking mechanism; allowing the forehead support to move from a first position to a second position; and engaging a forehead support locking mechanism.
Abstract:
A respiratory mask assembly for use in the delivery of non-invasive positive airway pressure to a user. The assembly includes a rigid shell having a channel portion defined by an inner wall, an outer wall and a channel floor, a face-contacting cushion acting to space the shell away from the user's face and a sealing tab extending from the cushion to engage a portion of the shell to provide a continuous airtight seal between the cushion and the shell. A retaining ring within the mask assembly is configured to secure the cushion to the shell. The retaining ring has a first portion including at least one clip configured to pass through at least one slot portion such that an underside surface of the at least one clip engages a section of the shell when the retaining ring is positioned within the channel.