Abstract:
A gas turbine engine component includes a body defining a cooling inlet and a cooling outlet in fluid communication through a cooling channel extending through the body, and a plurality of pedestals positioned in the cooling channel. The plurality of pedestals arranged such that the adjacent pedestals alternatingly converge toward a first wall of the cooling channel and toward a second wall, opposite the first wall. A gas turbine engine includes a combustor, and a plurality of gas turbine engine components positioned in fluid communication with the combustor. Each component includes a body defining a cooling inlet and a cooling outlet in fluid communication through a cooling channel extending through the body. A plurality of pedestals are positioned in the cooling channel and are arranged such that the adjacent pedestals alternatingly converge toward a first wall of the cooling channel and toward a second wall, opposite the first wall.
Abstract:
A component for a gas turbine engine is provided. The component includes an internal cooling passage disposed within the component, and an s-shaped trip strip formed on a surface of the internal cooling passage.
Abstract:
A cooling circuit for a gas turbine engine comprises a gas turbine engine component having a body with at least one internal cavity defined by a cavity wall. A plurality of cooling holes formed within the cavity wall, wherein each cooling hole is defined by a length extending from a cooling hole inlet to a cooling hole outlet, and wherein the cooling holes are positioned relative to each other such that a minimum allowable ligament distance is maintained between adjacent cooling holes along the entire length of each cooling hole. A gas turbine engine and a method of forming a cooling circuit for a gas turbine engine are also disclosed.
Abstract:
A turbomachine component includes a body defining an interior cooling channel in fluid communication with the exterior of the body for fluid communication with a cooling flow source. At least one flow modifying pedestal is disposed within the interior cooling channel extending in a first direction. The flow modifying pedestal includes at least one flow feature that extends from the pedestal in a second direction.