Abstract:
A pixel, a display device including a plurality of pixels, and a method of driving the display device. The display device includes: an emission pixel comprising an emission device, the emission pixel being in a display area; a dummy pixel in a non-display area outside the display area; and a repair line that is connectable to the emission device of the emission pixel and the dummy pixel, wherein the dummy pixel includes: a first dummy driver for receiving a same data signal as the data signal applied to the emission pixel for each of a plurality of subfields of one frame and controlling emission of the emission device of the emission pixel via the repair line; and a second dummy driver for resetting the repair line in one of the subfields in which the emission device does not emit light.
Abstract:
A pixel circuit for an organic light emitting diode (OLED) display is disclosed. One inventive aspect includes an organic light emitting diode, a first transistor, a second transistor, a first capacitor connected to a second node and a fixed voltage source, a third transistor, a fourth transistor, a second capacitor connected to the fourth transistor and a third node, a first control transistor and a second control transistor. The fourth transistor is connected to the first and third nodes and is turned off when an emission control signal is supplied to an emission control line and turned on otherwise. The first control transistor is connected to the third node and the first power source and is turned on when a first control signal is supplied.
Abstract:
A stage includes an output unit configured to supply a scan signal to an output terminal according to voltages of first and second nodes; a first driver configured to control the voltages of the first and second nodes so that when a start signal or an output signal of a previous stage is supplied to a first input terminal, the scan signal is supplied from the output unit; and a second driver configured to control the voltages of the first and second nodes, corresponding to signals supplied to a second input terminal, a fourth input terminal and a fifth input terminal, wherein the second driver comprises eighth and ninth transistors coupled in series between the output terminal and the second node, and wherein a gate electrode of the eighth transistor is coupled to the first node, and a gate electrode of the ninth transistor is coupled to the fourth input terminal.
Abstract:
A method of driving an OLED display includes: during a scanning period of a first frame, turning off a relay transistor and turning on a switching transistor to enable a second data voltage applied to a data line to be stored in a first capacitor; and during a light emitting period of the first frame, performing an operation to turn on a light emitting transistor and a compensation transistor to enable a voltage into which a first data voltage and a threshold voltage of a driving transistor are reflected to be applied to a second node for enabling the OLED to emit light by a driving current which flows into a driving transistor. The scanning period and the light emitting period temporally overlap each other.