Abstract:
A display apparatus includes a display and a controller. The display includes a plurality color sub-pixels, each including an organic light emitting diode and a driving transistor to drive the organic light emitting diode. The driving transistor drives in a saturation region for a normal mode and in a linear region for a standby mode. The controller controls a first portion of preset-color sub-pixels among the color sub-pixels to emit light and a second portion of the preset-color sub-pixels among the color sub-pixels to not emit light in the standby mode.
Abstract:
Disclosed is a printing device includes a substrate fixing unit to a bottom of which a substrate is fixed. The device includes a solution discharge unit separately disposed in a bottom direction and spaced apart from the substrate fixing unit and to deliver a printing solution to the substrate by discharging printing solutions with various colors. The device includes a solution supply unit to supply the printing solution to the solution discharge unit. The device also includes a drive unit configured to control the substrate fixing unit to move with respect to the solution discharge unit or to control the solution discharge unit to move with respect to the substrate fixing unit.
Abstract:
A quantum dot light-emitting device and a display apparatus including the same, the device including a light-emitting device that emits a first light; a quantum dot layer facing the light-emitting device, the quantum dot layer including a plurality of quantum dots, absorbing the first light, and emitting a second light and a third light that have different wavelength ranges compared to the first light; and a band pass filter on the quantum dot layer, the band pass filter cutting off a portion of the second light and a portion of the third light.
Abstract:
A backlight assembly includes a first light source part including a plurality of first light sources configured to generate light having a first color and a plurality of second light sources configured to generate light having a second color different from the first color, and a light guiding plate including a first incident surface and an exiting surface adjacent to the first incident surface. The exiting surface is configured to allow the light to pass therethrough. The exiting surface includes a first peripheral portion configured to absorb the light having the second color and a central portion adjacent to the first peripheral portion and configured to allow the light to pass therethrough. The first and second light sources are alternately located.
Abstract:
A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
Abstract:
A display device includes a display panel having a first transparent subpixel, a second transparent subpixel and a third transparent subpixel. A light source part provides light to the display panel. The light source part including a first light source configured to generate red light, a second light source configured to generate green light and a third light source configured to generate blue light. The third light source includes a blue light emitting diode and a wavelength shift layer. The wavelength of the blue light emitted from the third light source has a first peak within a range of about 445 nm to about 450 nm and a second peak within a range of about 450 nm to about 540 nm.