Abstract:
The present technology relates to an audio processing apparatus and method and a program that are configured to adjust audio characteristics more easily.This audio processing apparatus has a display control unit configured, on the basis of object positional information of an audio object, to cause a display unit to display an audio object information image indicative of a position of the audio object and a selection unit configured to select the predetermined audio object from among one or a plurality of the audio objects. The present technology is applicable to video/audio processing apparatuses.
Abstract:
The present technique relates to an information processing apparatus, an information processing method, and a program capable of performing appropriate remapping.An offset angle calculation section calculates an offset amount of a position of a reference screen from a reference position present in a front direction of a user, and a position information correction section corrects a position of an audio object referred with the reference position, in conformity with the position of the reference screen on the basis of the offset amount. Furthermore, an object remapping section remaps the position of the audio object in conformity with a position of a reproduction screen on the basis of the corrected position of the audio object. The present technique can be applied to an information processing apparatus.
Abstract:
The present invention relates to a signal processing apparatus and method, a program, and a data recording medium configured such that the playback level of an audio signal can be easily and effectively enhanced without requiring prior analysis. An analyzer 21 generates mapping control information in the form of the root mean square of samples in a given segment of a supplied audio signal. A mapping processor 22 takes a nonlinear function determined by the mapping control information taken as a mapping function, and conducts amplitude conversion on a supplied audio signal using the mapping function. In this way, by conducting amplitude conversion of an audio signal using a nonlinear function that changes according to the characteristics in respective segments of an audio signal, the playback level of an audio signal can be easily and effectively enhanced without requiring prior analysis. The present invention may be applied to portable playback apparatus.
Abstract:
The present technology relates to an encoding device, an encoding method, a reproduction device, a reproduction method, and a program enabling each reproduction equipment to reproduce an appropriate content in a simplified manner. A content data decoding unit decodes encoded metadata and outputs zoom area information, which is included in metadata acquired as a result thereof, designating an area to be zoomed. A zoom area selecting unit selects one or a plurality of pieces of zoom area information from among the zoom area information. A video segmenting unit segments a zoom area represented by the selected zoom area information in a video based on video data and outputs zoom video data acquired as a result thereof. An audio converting unit performs an audio converting process according to the selected zoom area information for audio data and outputs zoom audio data acquired as a result thereof. The present technology can be applied to a reproduction device.
Abstract:
The present technology relates to an encoding apparatus, an encoding method, a decoding apparatus, a decoding method, and a program for obtaining sound of higher quality. An audio signal decoding section decodes encoded audio data to acquire an audio signal of each object. A metadata decoding section decodes encoded metadata to acquire a plurality of metadata about each object in each frame of the audio signal. A gain calculating section calculates VBAP gains of each object in the audio signal for each speaker based on the metadata. An audio signal generating section generates an audio signal to be fed to each speaker by having the audio signal of each object multiplied by the corresponding VBAP gain and by adding up the multiplied audio signals. The present technology may be applied to decoding apparatuses.
Abstract:
The present technology relates to a signal processing apparatus and method that are capable of reproducing sound at an optional listening position with a high sense of reality. The signal processing apparatus includes a rendering unit that generates reproduction data of sound at an optional listening position in a target space on the basis of recording signals of microphones attached to a plurality of moving bodies in the target space. The present technology can be applied to a reproduction apparatus.
Abstract:
The present technology relates to a signal processing apparatus and method, and a program that can easily determine a localization position of a sound image. A signal processing apparatus includes: an acquisition unit configured to acquire information associated with a localization position of a sound image of an audio object in a listening space specified in a state where the listening space viewed from a listening position is displayed; and a generation unit configured to generate a bit stream on the basis of the information associated with the localization position. The present technology can be applied to the signal processing apparatus.
Abstract:
The present technology relates to an encoding device, an encoding method, a reproduction device, a reproduction method, and a program enabling each reproduction equipment to reproduce an appropriate content in a simplified manner. A content data decoding unit decodes encoded metadata and outputs zoom area information, which is included in metadata acquired as a result thereof, designating an area to be zoomed. A zoom area selecting unit selects one or a plurality of pieces of zoom area information from among the zoom area information. A video segmenting unit segments a zoom area represented by the selected zoom area information in a video based on video data and outputs zoom video data acquired as a result thereof. An audio converting unit performs an audio converting process according to the selected zoom area information for audio data and outputs zoom audio data acquired as a result thereof. The present technology can be applied to a reproduction device.
Abstract:
The present technology relates to a coding device and method, and a decoding device and method, and a program capable of reducing the amount of calculations for decoding.A separating unit separates a supplied bit stream into coded data of channel sources including a dialog source, coded data of additional data sources, and coded data of dialog information. A dialog information decoding unit decodes the coded data of the dialog information. When the dialog information acquired by the decoding is presented to a viewer, the viewer selects one source from the dialog source and some additional dialog sources. An additional dialog source decoding unit decodes only the coded data of an additional dialog source selected by the viewer. An additional dialog selection unit outputs a viewer-selected audio signal from among the audio signals of the dialog source and additional dialog sources in response to the selection instruction of the viewer. The present technology is applicable to coding devices and decoding devices.
Abstract:
The present technology relates to an encoding apparatus, an encoding method, a decoding apparatus, a decoding method, and a program for obtaining sound of higher quality. An audio signal decoding section decodes encoded audio data to acquire an audio signal of each object. A metadata decoding section decodes encoded metadata to acquire a plurality of metadata about each object in each frame of the audio signal. A gain calculating section calculates VBAP gains of each object in the audio signal for each speaker based on the metadata. An audio signal generating section generates an audio signal to be fed to each speaker by having the audio signal of each object multiplied by the corresponding VBAP gain and by adding up the multiplied audio signals. The present technology may be applied to decoding apparatuses.