Abstract:
A method for compensating for changes in a property of water in a multiphase fluid during analysis of the multiphase fluid is provided. In one embodiment, the method includes providing a multiphase flow meter system configured to emit and detect nuclear radiation, to emit and detect microwave radiation, and to analyze a received multiphase fluid. The method can also include measuring a temperature and a microwave complex permittivity of the multiphase fluid. Further, the method includes compensating for changes in the property of water in the multiphase fluid during analysis of the multiphase fluid by using an empirical transformation between the fluid temperatures, microwave complex permittivities and nuclear mass attenuation coefficients for mixtures of different waters expected to be produced and received by the multiphase flow meter system. Additional systems, devices, and methods are also disclosed.
Abstract:
The present disclosure provides systems, tools, and methods for enhancing a measurement of a fluid in a borehole, pipe, conduit and/or the like. The systems, tools, and methods may involve an electromagnetic measurement tool that includes a transmitting antenna configured to transmit electromagnetic energy, a receiving antenna configured to receive the electromagnetic energy, and a metamaterial element comprising a negative refractive index. The metamaterial element may focus the electromagnetic energy. The electromagnetic system may comprise one or more antennas that are disposed adjacent to or in contact with the fluid, electromagnetic energy may be transmitted via the transmitting antenna, and the electromagnetic energy may be received with the receiving antenna to measure a property of the fluid.
Abstract:
Methods and apparatus for calibrating microwave reflection sensors in fluid flow measurement devices are described. A calibration apparatus has a reservoir member with a fill opening, the reservoir member defining a reservoir in an interior thereof, the fill opening being operable to fill the reservoir with a calibrant fluid; a tube coupled to a side of the reservoir member and in fluid communication with the reservoir, the tube having a first end coupled to the side of the reservoir and a second end, the tube having a length matched to an inner diameter of a pipe section of the flow measurement device to extend across the inner diameter; and a seal member disposed at the second end of the tube for sealing the second end of the tube against a sensing surface of the microwave reflection sensor installed in the pipe section of the flow measurement device.
Abstract:
Electromagnetic probes for analyzing a flowing multi-phase fluid are described herein. The probes generally use a probe assembly for measuring liquid properties in a multiphase fluid flowing in a conduit, the probe assembly comprising a first member with a probe portion and a connection portion, the probe portion having a central bore with a conductor and a pressure-resistant insulator surrounding the conductor, the conductor extending from an opening at a distal end of the probe portion into the connection portion, the connection portion having a connector coupled to a distal end of the connection portion, the connection portion having a seal face with a groove extending around the probe portion; and a second member that, when assembled, is in direct contact with the first member at the distal end of the connection portion to apply compression and to retain the first member against a wall of the conduit.
Abstract:
Geothermal production monitoring systems and related methods are disclosed herein. An example system includes a production well, an injection well, a downhole pump or a downhole compressor to control a production of a multiphase fluid including steam from the production well, a first fluid conduit to transport the multiphase fluid away from the production well, a surface pump disposed downstream of the first fluid conduit, and a second fluid conduit. The surface pump is to inject water into the injection well via the second fluid conduit. A flowmeter is fluidly coupled to the first fluid conduit. The example system includes a processor to control at least one of (a) the downhole pump or the downhole compressor or (b) the surface pump in response to fluid property data generated by the first flowmeter.
Abstract:
Multiphase flowmeters and related methods are disclosed herein. An example apparatus includes a flowmeter and a fluid conduit to provide a flow path for a fluid relative to the flowmeter. The example apparatus includes a sensor coupled to the fluid conduit to generate data indicative of at least one of a presence, an absence, or a mass flow rate of solids in the fluid during flow of the fluid through the fluid conduit. The example apparatus includes a processor. The sensor is to be communicatively coupled to the processor. The processor is to selectively determine flow rates for one or more phases of the fluid based on data generated by the flowmeter and a first algorithmic mode or a second algorithmic mode selected based on the sensor data.
Abstract:
Systems, methods, apparatus, and articles of manufacture are disclosed to measure a multiphase flow. An example system includes a flowmeter including a mixer to homogenize a fluid received at an inlet of the flowmeter, a differential pressure sensor to measure a differential pressure of the fluid across an inlet and an outlet of the mixer, a Doppler probe to transmit a microwave or an ultrasonic wave into the fluid to generate Doppler frequency shift data, and a flowmeter manager to calculate a velocity of the fluid based on the Doppler frequency shift data, and calculate a density of the fluid based on the differential pressure and the velocity.
Abstract:
A technique facilitates evaluation of a fluid, such as a fluid produced from a well. The technique utilizes a modular and mobile system for testing flows of fluid which may comprise mixtures of constituents, and for sampling fluids thereof. The multiphase sampling method includes flowing a multiphase fluid comprising an oil phase and a water phase through a first conduit, the oil phase and water phase at least partially separating in the first conduit, mixing together the oil phase and water phase to form a mixed bulk liquid phase by flowing the multiphase fluid through a flow mixer toward a second conduit downstream the flow mixer, sampling a portion of the mixed bulk liquid phase at location at or within the second conduit, wherein the sampled portion of the mixed bulk liquid phase has a water-to-liquid ratio (WLR) representative of the pre-mixed oil phase and water phase.
Abstract:
Monitoring one or more items of equipment associated with a borehole or other conduit. A sensor system includes a vibration sensor for sensing vibrations at one or more sensor locations associated with one or more items of the equipment and/or the borehole or other conduit. A processing system processes the sensor information to determine a characteristic of the operation of the one or more items of equipment and/or the borehole or other conduit.
Abstract:
Multiphase flow meters and related methods are disclosed herein. An example apparatus includes an inlet manifold; an outlet manifold, first and second flow paths coupled between the inlet and outlet manifolds; and an analyzer to determine a flow rate of fluid flowing through the first and second flow paths based on a parameter of the fluid flowing through the first flow path.