Abstract:
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for activating multiple TCI states for PDSCH and/or PDCCH transmissions.
Abstract:
Wireless communications systems and methods related to the timing arrangements and the transmission gap configurations in 2-step random access channel (RACH) procedures to improve system latency and reliability of a RACH HARQ process are provided. The UE transmits a first message including a random access preamble and a payload, and then monitors for a second message in response to the first message during a random access response (RAR) window. In response to determining that no second message is received by the UE from the BS or a back off indicator is received within the RAR window, the UE re-transmits the preamble and payload of the first message after the RAR window lapses. In response to determining if the second message received within the RAR window carries a FallbackRAR or SuccessRAR, the UE then determines to re-transmit the payload of the first message based on the FallbackRAR, or to transmit an acknowledgement message based on the SuccessRAR.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may generate a report for one or more two-step random access channel (RACH) procedures between the UE and a base station (BS), wherein the RACH report includes at least one of an indication of a quantity of message A (MsgA) payloads transmitted during the one or more two-step RACH procedures on each beam of one or more beams associated with the BS, an indication of one or more parameters associated with each MsgA communication transmitted during the one or more two-step RACH procedures, or an indication of whether a respective signal strength for each beam, associated with the one or more two-step RACH procedures, satisfies a signal strength threshold. The UE may transmit the report to the BS. Numerous other aspects are provided.
Abstract:
Aspects described herein relate to transmitting an indication of a capability to support concurrent or time division multiplexed uplink transmission of at least one of multiple uplink channels across multiple component carriers. In addition, a configuration to transmit over the at least one of the multiple uplink channels over the multiple component carriers using concurrent transmission or time division multiplexed transmission can be received based on the indication.
Abstract:
Aspects described herein relate to requesting suspending of a data session of a first when a device capable of communicating over multiple subscriptions switches from an active communication state if the first network to an active communication state in a second network. The device can also request resuming the data session based on switching back to active communication state with the first network.
Abstract:
This disclosure relates to methods, devices, and systems for wireless communications, and more particularly to aggregating physical uplink shared channel (PUSCH) resource units relating to a random access message. A user equipment (UE) may identify a random access message of a random access procedure. The random access message may include a random access preamble and a random access payload. The UE may aggregate multiple PUSCH resource units of a set of PUSCH resource units associated with one or more PUSCH occasions (POs) based on one or more of a payload size of the random access payload or a modulation and coding scheme associated with the random access payload. As a result, the UE may transmit the random access payload of the random access message on a PUSCH using time and frequency resources of the aggregated multiple PUSCH resource units over the one or more POs.
Abstract:
In an embodiment, a base station determines a spatial relationship for a group of PUCCH resources, and transmits a control message that indicates the spatial relationship to a UE. The UE receives the control message and stores an indication of the spatial relationship. In some designs, the control message conveying the spatial relationship identifies the group of PUCCH resources via the PUCCH group index, while in other designs a different identification mechanism may be used. In another embodiment, a base station determines an association between a group of PUCCH resources and a PUCCH group index, and transmits a control message that indicates the association to a UE. The UE receives the control message and stores an indication of the association.
Abstract:
Increased symbol length of uplink pilot time slots (UpPTS) in special subframes is disclosed in which a configuration of a first special subframe may be independent from configuration of a second special subframe in the same frame, such that the first UpPTS of the first special subframe is longer than the second UpPTS of the second special subframe. The second UpPTS of the second special subframe may also be longer than legacy UpPTS length in select configurations. A serving base station may select the special subframe configurations in order to balance sounding reference signal (SRS) capacity for compatible user equipments (UEs) and downlink throughput for legacy UEs. The selected special subframe configurations may be transmitted by the serving base stations. In additional aspects, compatible UEs may be configured with at least two separate SRS power control parameters for use in the additional and legacy UpPTS symbols.
Abstract:
Certain aspects of the present disclosure provide a method for wireless communications by a UE. The method generally includes sharing a single transmit chain for communication by at least a first RAT and second RAT, determining a tolerable puncturing rate for the first RAT, and providing assistance information, based on the determined tolerable puncturing rate, to a base station of the second RAT to assist the base station in avoiding scheduling transmissions that would lead to conflict with uplink transmissions in the first RAT. Numerous other aspects are provided.
Abstract:
Some techniques described herein provide indication of a preferred scheduling mode for a user equipment (UE) based at least in part on an energy harvesting state of the UE. For example, the preferred scheduling mode may indicate a configured grant scheduling mode or a dynamic grant scheduling mode and/or one or more parameters associated with the preferred scheduling mode. For example, the one or more parameters may be based at least in part on an energy harvesting state of the UE. By indicating the preferred scheduling mode, the UE can selectively perform a transmission using a dynamic grant resource or a configured grant resource. Thus, the UE can request a dynamic grant resource when the UE is associated with a high energy level or a relatively fast charging rate, or a CG resource when the UE is associated with a low energy level ora relatively slow charging rate.