Abstract:
Techniques are provided that include identifying robust features within a training image. Training features are generated by applying a feature detection algorithm to the training image, each training feature having a training feature location within the training image. At least a portion of the training image is transformed into a transformed image in accordance with a predefined image transformation. Transform features are generated by applying the feature detection algorithm to the transformed image, each transform feature having a transform feature location within the transformed image. The training feature locations of the training features are mapped to corresponding training feature transformed locations within the transformed image in accordance with the predefined image transformation, and a robust feature set is compiled by selecting robust features, wherein each robust feature represents a training feature having a training feature transformed location proximal to a transform feature location of one of the transform features.
Abstract:
A sensor data processing system and method is described. Contemplated systems and methods derive a first recognition trait of an object from a first data set that represents the object in a first environmental state. A second recognition trait of the object is then derived from a second data set that represents the object in a second environmental state. The sensor data processing systems and methods then identifies a mapping of elements of the first and second recognition traits in a new representation space. The mapping of elements satisfies a variance criterion for corresponding elements, which allows the mapping to be used for object recognition. The sensor data processing systems and methods described herein provide new object recognition techniques that are computationally efficient and can be performed in real-time by the mobile phone technology that is currently available.
Abstract:
Systems and methods of verifying the results of an initial image recognition process are presented. A verification engine can receive a set of candidate images corresponding to the results of an image recognition process performed on a captured query image. The verification engine can determine an appropriate verification technique to apply to the images of the candidate set, and classify, re-rank or otherwise re-organize the candidate set such that the best match from the candidate set is confirmed as a proper match.
Abstract:
An object recognition ingestion system is presented. The object ingestion system captures image data of objects, possibly in an uncontrolled setting. The image data is analyzed to determine if one or more a priori know canonical shape objects match the object represented in the image data. The canonical shape object also includes one or more reference PoVs indicating perspectives from which to analyze objects having the corresponding shape. An object ingestion engine combines the canonical shape object along with the image data to create a model of the object. The engine generates a desirable set of model PoVs from the reference PoVs, and then generates recognition descriptors from each of the model PoVs. The descriptors, image data, model PoVs, or other contextually relevant information are combined into key frame bundles having sufficient information to allow other computing devices to recognize the object at a later time.
Abstract:
Apparatus, methods and systems of providing AR content are disclosed. Embodiments of the inventive subject matter can obtain an initial map of an area, derive views of interest, obtain AR content objects associated with the views of interest, establish experience clusters and generate a tile map tessellated based on the experience clusters. A user device could be configured to obtain and instantiate at least some of the AR content objects based on at least one of a location and a recognition.
Abstract:
Methods, systems, and articles of manufacture to improve image recognition searching are disclosed. In some embodiments, a first document image of a known object is used to generate one or more other document images of the same object by applying one or more techniques for synthetically generating images. The synthetically generated images correspond to different variations in conditions under which a potential query image might be captured. Extracted features from an initial image of a known object and features extracted from the one or more synthetically generated images are stored, along with their locations, as part of a common model of the known object. In other embodiments, image recognition search effectiveness is improved by transforming the location of features of multiple images of a same known object into a common coordinate system. This can enhance the accuracy of certain aspects of existing image search/recognition techniques including, for example, geometric verification.
Abstract:
A system capable of determining which recognition algorithms should be applied to regions of interest within digital representations is presented. A preprocessing module utilizes one or more feature identification algorithms to determine regions of interest based on feature density. The preprocessing modules leverages the feature density signature for each region to determine which of a plurality of diverse recognition modules should operate on the region of interest. A specific embodiment that focuses on structured documents is also presented. Further, the disclosed approach can be enhanced by addition of an object classifier that classifies types of objects found in the regions of interest.
Abstract:
An object recognition ingestion system is presented. The object ingestion system captures image data of objects, possibly in an uncontrolled setting. The image data is analyzed to determine if one or more a priori know canonical shape objects match the object represented in the image data. The canonical shape object also includes one or more reference PoVs indicating perspectives from which to analyze objects having the corresponding shape. An object ingestion engine combines the canonical shape object along with the image data to create a model of the object. The engine generates a desirable set of model PoVs from the reference PoVs, and then generates recognition descriptors from each of the model PoVs. The descriptors, image data, model PoVs, or other contextually relevant information are combined into key frame bundles having sufficient information to allow other computing devices to recognize the object at a later time.
Abstract:
Techniques are provided in which a plurality of edges are detected within a digital image. An anchor point located along an edge of the plurality of edges is selected. An analysis grid associated with the anchor point is generated, the analysis grid including a plurality of cells. An anchor point normal vector comprising a normal vector of the edge at the anchor point is calculated. Edge pixel normal vectors comprising normal vectors of the edge at locations along the edge within the cells of the analysis grid are calculated. A histogram of similarity is generated for each of one or more cells of the analysis grid, each histogram of similarity being based on a similarity measure between each of the edge pixel normal vectors within a cell and the anchor point normal vector, and a descriptor is generated for the analysis grid based on the histograms of similarity.
Abstract:
An object recognition ingestion system is presented. The object ingestion system captures image data of objects, possibly in an uncontrolled setting. The image data is analyzed to determine if one or more a priori know canonical shape objects match the object represented in the image data. The canonical shape object also includes one or more reference PoVs indicating perspectives from which to analyze objects having the corresponding shape. An object ingestion engine combines the canonical shape object along with the image data to create a model of the object. The engine generates a desirable set of model PoVs from the reference PoVs, and then generates recognition descriptors from each of the model PoVs. The descriptors, image data, model PoVs, or other contextually relevant information are combined into key frame bundles having sufficient information to allow other computing devices to recognize the object at a later time.