Abstract:
The present invention provides a method for allowing user terminal to acquire information about paging physical resource blocks (PRBs), a method of allowing a base station to indicate information about paging PRBs to UE, a method of allowing UE to determine allocation of paging PRBs, a method of allowing a base station to allocate paging PRBs, a base station and UE. The above method of allowing user terminal to acquire information about paging physical resource blocks (PRBs) includes detecting an anchor PRB, reading information carried by the anchor PRB, and acquiring information about the non-anchor paging PRBs associated with the anchor PRB based on the information carried by the anchor PRB. By this method, non-anchor paging PRBs can be specified to the UE.
Abstract:
A user equipment in a mobile communication system including a base station and the user equipment, including: a mode determining unit that receives instruction information indicating a transmission mode of broadcast information from the base station and determines the transmission mode based on the instruction information; and a receiving unit that performs a reception operation of the broadcast information according to the transmission mode determined by the mode determining unit.
Abstract:
The present invention is designed to reduce the decrease of spectral efficiency even when repetitious transmission is applied to communication by user terminals, in which the bandwidth to use is limited to partial narrow bandwidths in a system bandwidth. According to one aspect of the present invention, a user terminal, in which the bandwidth to use is limited to partial narrow bandwidths in a system bandwidth, has a receiving section that receives downlink control information (DCI), which includes information related to a repetition factor, and a control section that judges the repetition factor to apply to the transmission and/or receipt of a predetermined signal based on the information related to the repetition factor, wherein the information related to the repetition factor is selected in association with the MCS (Modulation and Coding Scheme) that is applied to the predetermined signal.
Abstract:
A user apparatus configured to perform communication with a base station in a mobile communication system, wherein a common search space and a user specific search space are multiplexed in a predetermined physical downlink control channel transmitted from the base station, the user apparatus including: a monitoring control unit configured to monitor, for each predetermined time frame, any one of the common search space and the user specific search space in the predetermined physical downlink control channel in order to obtain downlink control information.
Abstract:
The blind decoding method disclosed herein is a blind decoding method to allow a user terminal to blind-decode downlink control information that is transmitted from a radio base station using at least one of a legacy PDCCH and an enhanced PDCCH that is frequency-division-multiplexed with a PDSCH, and includes the steps in which the radio base station reports information for configuring a number of candidates, which information is used to configure numbers of search space candidates for the legacy PDCCH and numbers of search space candidates for the enhanced PDCCH, to the user terminal, and the user terminal blind-decodes the downlink control information based on the numbers of search space candidates for the legacy PDCCH and the numbers of search space candidates for the enhanced PDCCH that are configured based on the candidate quantity configuration information.
Abstract:
The present invention is designed to prevent the decrease of capacity even when the ratio of uplink subframes and downlink subframes is changed in each component carrier in TDD carrier aggregation. With the radio communication method according to the present invention, a radio base station apparatus generates a downlink control channel signal containing downlink control information including carrier indicator field information, and transmits the downlink control channel signal to a user terminal, and the user terminal receives the downlink control channel signal and executes signal processing with respect to the downlink signal in accordance with the downlink control information. In this case, the carrier indicator field information is information which associates a carrier index and the number of subframes to schedule victim subframes.
Abstract:
The present invention is designed so that communication overhead pertaining to control signals is reduced in a communication system in which the bandwidth of a physical downlink shared channel is narrower than the system bandwidth. The radio base station of the present invention has a resource allocation section that allocates a physical downlink shared channel to a predetermined narrow band in a downlink system bandwidth, for a user terminal, and a downlink control information generating section that generates downlink control information to report to the user terminal, and the downlink control information generating section determines the size of a field pertaining to resource allocation information, included in downlink control information related to the physical downlink shared channel, based on the narrow band where the physical downlink shared channel is allocated.
Abstract:
A system and method for allocating adequate uplink radio resources for delivery acknowledgment information of a downlink shared data channel when downlink control information is transmitted using an enhanced downlink control channel is disclosed. A radio base station configures a plurality of enhanced PDCCH sets, which are each formed to include a plurality of enhanced control channel elements (eCCEs) allocated to the enhanced downlink control channel, for a user terminal, the radio base station transmits, to the user terminal, the downlink control information, to which resource identifiers (ARIs) are added, the resource identifiers being different between the plurality of enhanced PDCCH sets, and the user terminal determines radio resources for an uplink control channel that are used to transmit delivery acknowledgment information of the downlink shared data channel, based on offset values that are associated with the resource identifiers (ARIs).
Abstract:
The present invention is designed to allow effective allocation of PUCCH resources, even when the ratio between uplink subframes and downlink subframes is changed in each cell, in CA by TDD. A user terminal communicates with a radio base station by means of TDD, in a communication band that is broadbanded by CA between a first cell and a second cell, and has a receiving section that receives downlink control information for the first cell and downlink control information for the second cell, allocated to a downlink control channel of the first cell, a retransmission control determining section that determines retransmission control for downlink signals transmitted from each cell, a transmitting section that feeds back retransmission control signals to the radio base station using the PUCCH of the first cell, and a resource selection section that selects the PUCCH resources to feed back the retransmission control signals, and, when the ratio of DL subframes is higher in the second cell than in the first cell, the resource selection section determines the PUCCH resources to allocate the retransmission control signals that correspond to the first cell and the second cell to, by different methods.
Abstract:
According to the present invention, even when the ratio between uplink subframes and downlink subframes is changed in each component carrier in TDD carrier aggregation, it is still possible to prevent a decrease in capacity. With the radio communication method according to the present invention, a radio base station apparatus generates a downlink control channel signal containing downlink control information including carrier indicator field information, and transmits the downlink control channel signal to a user terminal, and the user terminal receives the downlink control channel signal, and executes signal processing with respect to the downlink signal in accordance with the downlink control information. In this case, the carrier indicator field information is information which associates a carrier index and the index of a secondary cell subframe to be scheduled.