Abstract:
Systems and methods of providing Basis Service Set (BSS) load information pertinent to multi-user (MU) communications in WLAN systems. An access point (AP) can determine the counts of MU-capable user stations (STAs) active STAs in a BSS. Each MU-capable STA is configured for Multi-User Multiple-Input Multiple-Output (MU-MIMO) communications and/or Orthogonal Frequency-Division Multiple Access (OFDMA) communications. The AP can further determine ratios of PPDU time over an observation period of MU uplink (UL) and downlink (DL) communications, respectively. The AP can further determine an underutilization level of each available frequency subband, the underutilization level integrating the actual underutilization in terms of both spatial streams and frequency subbands. The DL and UL underutilization levels can be separately determined and reported. The MU BSS load information can be included in a beacon frame as a BSS load information element and distributed to user STAs periodically.
Abstract:
Apparatus and methods are provided for peer-to-peer communication network and multi-channel operation over OFDMA. In novel aspect, the communication device sends a first frame to reserve a time period for one or more peer-to-peer services in a wireless communication network, establishes one or more sessions with one or more peer-to-peer communication devices in the time period reserved for a subset of the one or more peer-to-peer services, transmits a second frame allocating radio resource for a subset of communications devices of the one or more communications devices, and sends or receives one or more data frames to/from one or more peer-to-peer communication devices concurrently using OFDMA, wherein the one or more data frames are received during the reserved time period. In one embodiment, the communication device is non-AP. In another embodiment, the second frame indicates resource blocks allocated for each of the one or more peer-to-peer communication devices.
Abstract:
A method of sub-channel independent network allocation vector (NAV) management by a wireless station (STA) in a wideband wireless communications system is proposed. In the wideband system having multiple sub-bands, each NAV for a corresponding sub-band is independently managed. The protection duration for each NAV is independent for each sub-band and the threshold or update rule for NAV modification is also independent for each sub-band. The threshold or update rule for NAV modification may also be different when the NAV is generated or propagated by an OBSS STA. Furthermore, early termination of NAV is allowed if the NAV is set by an OBSS STA only.
Abstract:
Methods are provided for concurrent communications among multiple wireless communications devices. In one novel aspect, the wireless station transmits a wideband signal to a plurality of wireless communications devices using downlink MIMO and/or OFDMA. The wireless station receives a plurality of responding frames from the plurality of wireless communications devices concurrently using OFDMA. In one embodiment, the wireless station transmits a MU indication bit and MU bandwidth assignment information in the downlink MIMO and/or OFDMA frames. In another novel aspect, the uplink responding frames from multiple wireless communications devices are sent on a corresponding narrow concurrently over more than one transmission instance. AP polling or SIFS only is used between two transmission instances. When the concurrent responding frames occupies less than a bandwidth of an available uplink OFDMA bandwidth, the unoccupied bandwidth is either left empty or occupied by one or more duplicated responding frames.
Abstract:
Methods and apparatus are provided for burst OFDMA support MU-MIMO in the WLAN network. In one novel aspect, pluralities of user channels are configured for a downlink wideband channel, wherein each user channel is associated with a user group selecting from a SU-SISO, or a SU-MIMO or a MU-MIMO. In one embodiment, the SIG1 and SIG2 signaling fields are independent for each user channel. In another embodiment, the SIG1 fields are duplicates for all user channels carrying common information. The SIG2 fields for each user group are different from each other carrying user group specific information. In another novel aspect, an uplink OFDMA frames contains ACK packets from multiple STAs concurrently using an uplink wideband channel. In one embodiment, one ACK packet is sent for a MU-MIMO user group. In another embodiment, the uplink ACK packet assignment is based on indications in the downlink PHY SIG field.
Abstract:
A method for frame rate control in a transmitter of a wireless communications system is disclosed. The method comprises generating a frame and a first information corresponding to a first expiration time of the frame by a frame generating module; handling the frame according to the first expiration time by the driver module; and informing the frame generating module an adjusting information according to a first pre-determined rule by the driver module.
Abstract:
A method of improved allocation of uplink resources in an OFDMA network is proposed. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). The AP can switch between random access operation and non-random access operation without the need for any special protection mechanisms. In the event of an increase in uplink OFDMA frame collisions the AP can switch from random operation to non-random operation to reduce the number of collisions. In the event of a decrease in uplink OFDMA frame collisions the AP can switch from non-random operation to random operation to reduce required AP processing. The AP can also dynamically control a STA access probability to reduce the number of collisions by reducing the number of uplink OFDMA frames each STA transmits.
Abstract:
A communication device includes a Session Management Module (SMM) that controls data that is communicated via a first communication link and the data that is communicated via a second communication link and causes the following steps to be performed: discovering a second device via a first communication link, establishing a communication session between the communication device and the second device over a first subset of the communication links (the selection of the first subset of the communication links is a function of a communication link selection rule), exchanging a first type of data over the at least one of the first subset of communication links (the at least one of the first subset of communication links is selected in accordance with a communication link data selection rule), and ending the communication session between the communication device and the second device.
Abstract:
A method of performing OFDMA transmission with aggregation from multiple access categories to improve channel utilization of a wireless channel is proposed. In one novel aspect, data from multiple access categories are allowed to be aggregated and transmitted in the same packet to utilize idle time efficiently. In downlink OFDMA, AP can send different AC data to different STAs so that AP can better arrange the transmission resource block. If the resource for one STA has long enough idle time, AP can aggregate more data that is different to the current AC for the same STA to better utilize the resource. In UL OFDMA, different STAs can send different AC data to AP. If the resource for one STA has long enough idle time, the STA can aggregate more data that is different to the current AC to better utilize the resource.
Abstract:
A method of improved allocation of uplink resources in an OFDMA network is proposed. A wireless communications station (an AP) reserves both dedicated resource and contention resource for uplink OFDMA operation for a list of communications devices (STAs). The AP can switch between random access operation and non-random access operation without the need for any special protection mechanisms. In the event of an increase in uplink OFDMA frame collisions the AP can switch from random operation to non-random operation to reduce the number of collisions. In the event of a decrease in uplink OFDMA frame collisions the AP can switch from non-random operation to random operation to reduce required AP processing. The AP can also dynamically control a STA access probability to reduce the number of collisions by reducing the number of uplink OFDMA frames each STA transmits.