Abstract:
A contact-type image sensor assembly including: an image sensor; a light source for illuminating an original document which has image information; an optical lens for imaging light reflected by the original document onto the image sensor; and a supporting member for supporting the image sensor, the light source and the optical lens, wherein the supporting member includes: a first supporting member for maintaining the distance from the surface of the original document and the light incidental side of the optical lens at a predetermined distance; a second supporting member disposed individually from the first supporting member and acting to maintain the distance from the light emission side of the optical lens to the light receiving side of the image sensor; and a third supporting member for supporting the first and second supporting members at predetermined positions and the third supporting member supports the first and second supporting members in this way that their positions can be adjusted.
Abstract:
A thin-film magnetic head which can simultaneously trace two tracks is disclosed. This head comprises: a pair of magnetic gap portions; and a pair of magnetic thin-film layers each of which includes a magnetic pole portion in contact with the magnetic gap portion. A distance between these layers increases as they go away from the magnetic pole portions. Each of the layers includes an expanded portion having a cross sectional area in the passing direction of the magnetic fluxes which is larger than a cross sectional area in the passing direction of the magnetic fluxes at the magnetic pole portion.
Abstract:
In a process for carrying out a reaction in a plurality of catalyst zones arranged in series which shows remarkable rise of reaction temperature due to its high initial activity, an improvement is provided by starting the reaction with a first reactor in which its catalyst activity is reduced in advance so as to make it easier to control the reaction temperature; with other reactors in which their catalyst activities are maintained at higher values with an increasing gradient and with a last reactor in which its catalyst activity is made sufficiently larger in order to be able to maintain the initial value of total conversion with all the reactors even at a time when the catalyst activity of the first reactor is reduced to unusable extent, interrupting the reaction when the catalyst activity of the first reactor is reduced to unusable extent, transferring the first reactor to the next to the last reactor after charged with a new catalyst, and repeating the operation in the subsequent run as in the first run except that the order of each of the reactors is advanced by one in each time of the transfer of the first reactor to the last.