Abstract:
In one example, a method includes exchanging, by a first routing device and with a second routing device, targeted hello messages using a Protocol Independent Multicast (PIM) protocol to establish a targeted neighbor connection between the first routing device and the second routing device, wherein the first routing device exchanges the targeted hello messages with the second routing device via at least one intermediate routing device, and wherein at least one of the first or second routing device comprises a rendezvous point (RP). The example method further includes processing, by the first routing device using the targeted neighbor connection, a register message that includes multicast stream data elements, wherein each multicast stream data element identifies a source address and a group address that are collectively associated with a respective multicast stream, and wherein each multicast stream data element further indicates whether the respective multicast stream is active or withdrawn.
Abstract:
An example method includes exchanging targeted hello messages to establish a targeted neighbor connection between a first routing device and a second routing device, wherein one of the routing devices comprises a central routing device, and wherein another one of the routing devices comprises an ingress routing device. The example method further includes processing a source-active register message that specifies a source address and an identifier that are collectively associated with a multicast stream, and wherein the source-active register message further indicates whether the multicast stream is active or withdrawn. After processing the source-active register message, the example method further includes processing a list-of-receivers register message that specifies an egress routing device and at least the identifier that is associated with the multicast stream, wherein the list-of-receivers register message further indicates whether or not the egress routing device requests receipt of data associated with the multicast stream.
Abstract:
Techniques are described for providing robust control plane asserts in a network using Protocol Independent Multicast (PIM) or other routing protocols for controlling delivery of multicast traffic. In one example, a router includes a control unit having a hardware-based processor executing a Protocol Independent Multicast (PIM) protocol. The control unit, when executing the PIM protocol, initiates an election process for selecting, from a plurality of routers, a forwarding router to forward multicast traffic to a shared media computer network. In addition, the control unit determines whether the multicast traffic has been received by the router and outputs, in association with the election process, a PIM assert message that includes an indication as to whether the router has successfully received the multicast traffic.
Abstract:
An example egress network device includes at least one computer processor and a memory. The memory includes instructions that cause the at least one computer processor to receive messages from each of a plurality of ingress network devices. Each message specifies a multicast source as an anycast address that belongs to two or more sources, a multicast group, and a customer site identifier that uniquely identifies a customer network device via which the anycast address is reachable. The instructions cause the at least one computer processor to select, based on the customer site identifiers, one of the plurality of ingress network devices to which to send a multicast join message of a plurality of multicast join messages for the multicast source and multicast group. The instructions cause the at least one computer processor to send the multicast join message to the selected one of the plurality of ingress network devices.
Abstract:
The techniques describe example network systems providing core-facing designated forwarder (DF) election to forward multicast traffic into an EVPN of a core network. For example, a first PE device of a plurality of PE devices participating in an EVPN comprises one or more processors operably coupled to a memory, wherein the one or more processors are configured to: determine that a first multicast traffic flow has started for the first PE device; in response, send a source-active (SA) route to indicate the first multicast traffic flow has started for the first PE device; receive, from a second PE device, a second SA route that indicates that a second multicast traffic flow has started for the second PE device; and perform an election of a core-facing DF from among the first PE device and second PE device, wherein the core-facing DF is configured to forward the multicast traffic into the EVPN.
Abstract:
In general, techniques are described for enabling a network of network devices (or “nodes”) to provide redundant multicast streams from redundant multicast sources to an egress network node. In some examples, the egress network node (or a controller for the network) computes maximally redundant trees (MRTs) from the egress network node to a virtual proxy node virtually added to the network topology by the egress network node for redundant multicast sources of redundant multicast streams.
Abstract:
An example egress network device includes at least one computer processor and a memory. The memory includes instructions that cause the at least one computer processor to receive messages from each of a plurality of ingress network devices. Each message specifies a multicast source as an anycast address that belongs to two or more sources, a multicast group, and a customer site identifier that uniquely identifies a customer network device via which the anycast address is reachable. The instructions cause the at least one computer processor to select, based on the customer site identifiers, one of the plurality of ingress network devices to which to send a multicast join message of a plurality of multicast join messages for the multicast source and multicast group. The instructions cause the at least one computer processor to send the multicast join message to the selected one of the plurality of ingress network devices.
Abstract:
Port synchronization is provided for multicast on an Ethernet segment (ES) in which a device (CE) is multihomed to at least two devices (PE1 and PE2) of a VLAN. Such example embodiments may do so by providing computer-implemented method for use in a first device belonging to an Ethernet virtual private network (EVPN) and an Ethernet segment (ES), the ES including a second device and a third device, the second device also belonging to the EVPN, the third device being multihomed to the first device and the second device via the ES, and the first and second devices having snooping enabled for multicast group messages, the computer-implemented method comprising: (a) detecting, on a first interface of the first device, from the third device via the ES, a multicast query message, wherein the multicast query message is not detected by the second device via the ES; (b) marking the first interface of the first device as a multicast router port; (c) generating a message identifying the ES and including information encoding that the multicast query message was detected on the ES; and (d) sending, via the EVPN, the message generated to the second device so that the second device will mark an interface, on the ES, with the third device, as a multicast router port.
Abstract:
Techniques are described for multicast flow prioritization in protocol independent multicast (PIM) networks with multicast flow limits. According to the disclosed techniques, once a router has reached its multicast flow limit, the router may preempt an installed lower priority multicast flow with a newly requested higher priority multicast flow. For example, if a maximum number of multicast flows are installed on the router, then, upon receiving a PIM join for a higher priority flow as compared to the installed flows, the router replaces one of the installed lower priority flows with the received higher priority flow. Furthermore, according to the disclosed techniques, priority values for multicast flows are consistent across a PIM domain and each of the routers within the PIM domain is configured to use the priority values to select a higher priority flow over a lower priority flow.
Abstract:
A device may receive a plurality of traffic flows to be provided to a set of destination devices. The device may process the plurality of traffic flows to identify respective sets of attributes associated with the plurality of traffic flows. The device may assign one of a plurality of traffic forwarding techniques, to a first traffic flow, of the plurality of traffic flows, based on the respective sets of attributes associated with the plurality of traffic flows. The device may provide the plurality of traffic flows to the set of destination devices. The device may determine that a condition, of a set of conditions associated with the plurality of traffic flows, has been satisfied in association with providing the plurality of traffic flows to the set of destination devices. The device may perform a set of actions after determining that the condition has been satisfied.