Abstract:
Mechanisms are provided for scheduling execution of pre-execution operations of an annotator of a question and answer (QA) system pipeline. A model is used to represent a system of annotators of the QA system pipeline, where the model represents each annotator as a node having one or more performance parameters indicating a performance of an execution of an annotator corresponding to the node. For each annotator in a set of annotators of the system of annotators, an effective response time for the annotator is calculated based on the performance parameters. A pre-execution start interval for a first annotator based on an effective response time of a second annotator is calculated where execution of the first annotator is sequentially after execution of the second annotator. Execution of pre-execution operations associated with the first annotator is scheduled based on the calculated pre-execution start interval for the first annotator.
Abstract:
A method, system and computer program product for optimizing runtime performance of an application workload. Network input/output (I/O) operations between virtual machines of a pattern of virtual machines servicing the application workload in a private cloud are measured over a period of time and depicted in a histogram. A score is generated for each virtual machine or group of virtual machines in the pattern of virtual machines based on which range in the ranges of I/O operations per seconds (IOPS) depicted in the histogram has the largest sample size and the number of virtual machines in the same pattern that are allowed to be in the public cloud. In this manner, the runtime performance of the application workload is improved by minimizing the network input/output communications between the two cloud environments by migrating those virtual machine(s) or group(s) of virtual machines with a score that exceeds a threshold value.
Abstract:
A computer implemented method and system for managing resources available to an application in a shared pool of configurable network computing resources is provided. The method includes receiving, by a metric collector, one or more service level metrics correlated with one or more time intervals. The service level metrics are converted to hypervisor weights and a hypervisor is configured to allocate computing resources to a virtual machine according to the hypervisor weights. In response to translating and implementing the hypervisor weights, a dynamic cost model is created. The cost model is correlated with chosen service level metrics as well as with the duration of time a chosen service level metric is implemented.
Abstract:
A technique for cloud infrastructure backup in a virtualized environment utilizing shared storage includes obtaining a workload input/output (I/O) profile to the shared storage over a time period. An attempt to locate one or more time windows in the workload I/O profile for which a cloud infrastructure backup can be staged is initiated. In response to determining the cloud infrastructure backup can be staged during at least one of the time windows, staging of the cloud infrastructure backup is scheduled during a selected one of the time windows. In response to determining the cloud infrastructure backup cannot be staged during at least one of the time windows, an interference tolerance approach is employed for accessing the shared storage for active workloads and the cloud infrastructure backup during the staging of the cloud infrastructure backup.
Abstract:
A technique of backing up a workload in a virtual environment includes identifying one or more files that are associated with the workload. One or more source volumes that include the one or more files are identified. A respective target volume is provisioned for each of the one or more source volumes identified. Only dirty blocks are copied (in a snapshot mode that prevents an update to the one or more source volumes during the snapshot mode) from each of the one or more source volumes to its respective target volume. The one or more dirty blocks are then copied from each target volume to a backup medium.
Abstract:
Provided are techniques for displaying a first image on a first device, wherein the first image comprises an image characteristic; analyzing, at a second device remote from the first device, a viewing characteristic corresponding to the first image; responsive to detecting the viewing characteristic meets a criteria, transmitting a signal from the second device to the first device; and responsive to the signal, controlling a programmable parameter corresponding to the image characteristic on the first device to modify a display of a second image on the first device.
Abstract:
A processor-implemented method, system, and/or computer program product sorts and displays product reviews of ecommerce products. A system receives product reviews for ecommerce products. The product reviews are displayed on an ecommerce webpage, are generated by product reviewers, and are for different types of products. Reviewer profiles of the product reviewers are received. The reviewer profiles include characteristics of the product reviewers that affect usage of one or more of the different types of products. A user profile for a user is received. The user profile includes characteristics of the user that affect usage of one or more of the different types of products. The user profile is matched to a specific reviewer profile from the reviewer profiles. The product reviews are sorted according to the different types of products and the specific reviewer profile. The sorted product reviews are then displayed on the ecommerce webpage.
Abstract:
A method, system and computer program product for optimizing runtime performance of an application workload. Network input/output (I/O) operations between virtual machines of a pattern of virtual machines servicing the application workload in a private cloud are measured over a period of time and depicted in a histogram. A score is generated for each virtual machine or group of virtual machines in the pattern of virtual machines based on which range in the ranges of I/O operations per seconds (IOPS) depicted in the histogram has the largest sample size and the number of virtual machines in the same pattern that are allowed to be in the public cloud. In this manner, the runtime performance of the application workload is improved by minimizing the network input/output communications between the two cloud environments by migrating those virtual machine(s) or group(s) of virtual machines with a score that exceeds a threshold value.
Abstract:
A method, system and computer program product for optimizing runtime performance of an application workload. Network input/output (I/O) operations between virtual machines of a pattern of virtual machines servicing the application workload in a private cloud are measured over a period of time and depicted in a histogram. A score is generated for each virtual machine or group of virtual machines in the pattern of virtual machines based on which range in the ranges of I/O operations per seconds (IOPS) depicted in the histogram has the largest sample size and the number of virtual machines in the same pattern that are allowed to be in the public cloud. In this manner, the runtime performance of the application workload is improved by minimizing the network input/output communications between the two cloud environments by migrating those virtual machine(s) or group(s) of virtual machines with a score that exceeds a threshold value.
Abstract:
A method, system and computer program product for optimizing runtime performance of an application workload. Network input/output (I/O) operations between virtual machines of a pattern of virtual machines servicing the application workload in a private cloud are measured over a period of time and depicted in a histogram. A score is generated for each virtual machine or group of virtual machines in the pattern of virtual machines based on which range in the ranges of I/O operations per seconds (IOPS) depicted in the histogram has the largest sample size and the number of virtual machines in the same pattern that are allowed to be in the public cloud. In this manner, the runtime performance of the application workload is improved by minimizing the network input/output communications between the two cloud environments by migrating those virtual machine(s) or group(s) of virtual machines with a score that exceeds a threshold value.