Abstract:
Embodiments of this application disclose an incoming call alert method and a terminal. The incoming call alert method includes: receiving an incoming call request; and invoking an audio/video player of a system to play audio/video corresponding to the incoming call request. The audio/video player is disposed in a system of the terminal in the embodiments of this application, so that when the terminal receives the incoming call request, the system of the terminal can play the audio/video used for incoming call alert. In this way, the terminal can alert a user by playing the audio/video without occupying additional system resources. In addition, an animation of the video and a caller ID display interface that are displayed by the terminal are integrated in terms of a visual effect, thereby improving use experience of the user.
Abstract:
A power divider and an electronic device are provided. The power divider includes: a main port having an input characteristic admittance; a first output port having a first characteristic admittance; a second output port having a second characteristic admittance, where the second and the first characteristic admittances have a predetermined ratio relationship; a first adjustment branch coupled between the main port and the first output port; and a second adjustment branch coupled between the main port and the second output port. The input characteristic admittance is a sum of admittances presented by the first and second adjustment branches at the main port. The admittance presented by the first adjustment branch at the main port and the admittance presented by the second adjustment branch at the main port are adjustable and the input characteristic admittance is enabled to be equal to a sum of the first and the second characteristic admittances.
Abstract:
A smart antenna, an antenna feeder system, an antenna communications system, and an Access Point (AP) are provided. The smart antenna includes an antenna element array and an impedance transformation circuit. A feeding end of the antenna element array is connected to a first end of the impedance transformation circuit, a second end of the impedance transformation circuit is an input end of the smart antenna, and the input end of the smart antenna is connected to a feeder. The antenna element array can form a plurality of different beam shapes, and the impedance transformation circuit is configured to transform the different input impedance of the feeding end of the antenna element array into preset input impedance at the input end of the smart antenna.
Abstract:
A data transmission processing method and apparatus, where the method includes receiving, by a common services entity (CSE), a first request message that is sent by an application function (AF) and used to instruct the CSE to update a first underlying network information resource, where the first request message includes data for calling an underlying network service, and the first underlying network information resource is a resource specially used to store the data for calling an underlying network service, updating, by the CSE, original data in the first underlying network information resource to the data for calling an underlying network service, and sending, by the CSE, the data for calling an underlying network service in the first underlying network information resource to an underlying network using a control plane.
Abstract:
The present invention relates to the communications field, and in particular, to an antenna system. The antenna system includes: a transmit antenna, a receive antenna, a radome above the transmit antenna and the receive antenna, and a reflector within the radome, where a signal received by the receive antenna after a transmitted signal of the transmit antenna is reflected by the reflector offsets an intra-frequency interference signal generated because the transmitted signal of the transmit antenna is directly received by the receive antenna. As a result, according to the embodiments of the present invention, the intra-frequency interference signal of the transmit antenna to the receive antenna may be eliminated without increasing the number of antennas and a distance between antennas.
Abstract:
The present invention discloses a microwave antenna alignment method and apparatus, relating to the field of communications technologies, and providing a clear instruction for antenna adjustment and implementing more convenient antenna alignment. The microwave antenna alignment method includes: performing vector subtraction for in-phase signals received by two sub-antennas within a same horizontal plane to obtain an azimuth plane vector difference, where an azimuth plane angular error signal includes the azimuth plane vector difference, and the azimuth plane angular error signal is used to reflect a deviation angle and direction of a received beam from the antenna direction within the horizontal plane; and aligning the antenna within the horizontal plane according to the azimuth plane angular error signal.
Abstract:
A method and an apparatus for aligning a phased array antenna, and a phased array antenna are provided. A method for aligning a phased array antenna according to an embodiment of the present invention includes: receiving signals from respective antenna array subunits; performing phase shifting on the signals from the respective antenna array subunits, combining phase-shifted signals, where the signals are from the respective antenna array subunits, and obtaining a first signal, where a receiving beam corresponding to the first signal is a rotating receiving beam; rotating, by the rotating receiving beam, around a transmitting/receiving beam according to a preset angular frequency by using the transmitting/receiving beam as a rotation axis; calculating power values of respective first signals in a case that the rotating receiving beam rotates through different angles; and adjusting, according to the power values, a direction of the transmitting/receiving beam to align a phased array antenna.