Abstract:
A gate driver unit is presented. The gate driver unit includes a first power exchanging coil operatively coupled to a power source. The gate driver unit includes a second power exchanging coil configured to receive power from the first power exchanging coil via a magnetic field and a field focusing element disposed between the first power exchanging coil and the second power exchanging coil and configured to focus the magnetic field onto the second power exchanging coil. The gate driver unit also includes a first circuit coupled to the second power exchanging coil. The gate driver unit includes a gate drive subunit operatively coupled to the first circuit and configured to provide an output signal to a control terminal corresponding to a controllable switch of a second circuit. A magnetic resonance imaging system and a method of contactless power transfer in a magnetic resonance imaging system are also presented.
Abstract:
A wireless charging system for wirelessly charging an ultrasound imaging system is disclosed. The wireless charging system comprise one or more primary coils connected to a power source and is capable of transmitting power from the power source. The primary coil of the one or more primary coils is disposed in a charging unit of the ultrasound imaging system. One or more secondary coils are configured to receive power transmitted from the primary coil. One or more field focusing elements are positioned between the primary coil and the secondary coil. A field focusing element is capable of focusing the magnetic field from the primary coil onto the secondary coil for wirelessly transferring power to one or more of the ultrasound device and the probe of the ultrasound imaging system.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, at least one load electrically coupled to the plurality of UPSs and the ring bus, and a controller communicatively coupled to the plurality of UPSs. The controller is configured to calculate a phase angle for each UPS of the plurality of UPSs, wherein the phase angle is calculated relative to a common reference angle, and control operation of each UPS based on the respective calculated phase angles.
Abstract:
A method and system for an uninterruptible power supply (UPS) are provided. The UPS includes a three-phase high power transformer, an active or passive-rectifier configured to generate and regulate a set of DC link voltages, and a set of cascaded inverters configured to generate an AC voltage using the DC link voltages. The UPS also includes a set of bi-directional battery converters configured to charge a bank of backup batteries when power is available from an AC mains source and discharge the bank of backup batteries to generate a three-phase AC voltage when the AC mains source voltage falls outside a predetermined range. The UPS further includes a bypass switch configured to electrically couple the AC mains source directly to a load when the UPS is in a bypass mode of operation and electrically couple the bank of backup batteries to the load through the set of bi-directional battery converters and the transformer.
Abstract:
A wireless charging device includes a driver unit configured to generate one of a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Also, the wireless charging device includes a transmitting unit having a first coil and a first capacitor and configured to transmit the first AC voltage signal. Further, the transmitting unit includes a second coil and a second capacitor and configured to transmit the second AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a first receiver device operating at the first frequency based on a change in a first voltage in the transmitting unit, and detect a second receiver device operating at the second frequency based on a change in a second voltage in the transmitting unit.
Abstract:
This disclosure provides systems, methods, and apparatuses for wireless power transmission. Various implementations of this disclosure relate generally to intermittent wireless charging. A wireless power transmission apparatus (such as a charging pad or surface) can intermittently provide wireless power to one or more wireless power reception apparatuses based on time slices. The wireless power reception apparatuses can cool during time slices in which wireless power is not transferred. A power control unit of the wireless power transmission apparatus may determine first time slices during which wireless power will be provided to the wireless power reception apparatus. The power control unit also may determine second time slices during which wireless power will not be provided to the wireless power reception apparatus, where the second time slices are interspersed with the first time slices allowing time for thermal loads that accumulated during the first time slices to dissipate.
Abstract:
This disclosure provides systems, methods and apparatuses for wireless power transmission and reception. A wireless power transmission apparatus may include a primary coil that transmits power to a corresponding secondary coil in a wireless power reception apparatus. The wireless power transmission apparatus may configure characteristics of the wireless power transmission based on a load setting of a wireless power reception apparatus. The wireless power transmission apparatus may take into account a coupling factor and power transfer characteristics of the wireless power reception apparatus in determining a configuration of the wireless power transmission from the wireless power transmission apparatus to the wireless power reception apparatus. In some implementations, a change in wireless power transmission may occur based on a corresponding change in the load. For example, the change in wireless power transmission and the corresponding change in the load may occur in relation to a synchronization event.
Abstract:
A detection device includes a detection mat having a plurality of detection coils, and at least one pair of groups of detection coils, the pair of groups of detection coils includes first and second groups of detection coils. The first and second group of detection coils comprises first and second first and second impedance values. The detection device includes one or more drive sub-systems and a comparison sub-system. The drive sub-systems are operatively coupled to the detection mat and configured to excite at least one pair of groups of detection coils. The comparison sub-system is operatively coupled to the detection mat and configured to receive a differential current signal from the pair of groups of detection coils, the comparison subsystem is configured to generate a control signal based on the differential current signal.
Abstract:
A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
Abstract:
A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.